A067963
Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.
Original entry on oeis.org
2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067964
Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.
Original entry on oeis.org
2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A201513
Number of ways to place n nonattacking kings on an n X n board.
Original entry on oeis.org
1, 1, 0, 8, 79, 1974, 62266, 2484382, 119138166, 6655170642, 423677826986, 30242576462856, 2390359529372724, 207127434998494421, 19516867860507198208, 1986288643031862123264, 217094567491104327256049, 25357029929230564723578520, 3151672341378566296926684684
Offset: 0
A133791
Number of n X n binary matrices with every 1 adjacent to some 0 horizontally, vertically, diagonally or antidiagonally.
Original entry on oeis.org
1, 15, 417, 50625, 24879489, 48231228511, 373654052856545, 11546079143118274625, 1422756868491071266637985, 699232611373976058162941025423, 1370556061582419558173913152072112161, 10714096395475651010921722651799661109404545
Offset: 1
- Stephan Mertens, Table of n, a(n) for n = 1..22 (first 18 terms from Christian Sievers)
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], Aug 2024.
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, King Graph
- Wikipedia, Dominating set
A067959
Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.
Original entry on oeis.org
1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1
Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A212269
Number of ways to place k non-attacking kings on an n X n cylindrical chessboard, summed over all k >= 0.
Original entry on oeis.org
2, 5, 19, 205, 3011, 92875, 4763459, 459630701, 78223965193, 24270274906085, 13497818986883771, 13571363009654254429, 24562890586806439035377, 80199120146273882569630015, 471874707649862024071657639861, 5005895207027974222377733802848093
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.
A220638
Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one king-move neighbor.
Original entry on oeis.org
1, 1, 10, 369, 92801, 128171936, 1040315976961, 48590896359378961, 13140746227808545282304, 20540255065209806005525289313, 185661218973084382181156348510614065, 9703072851259276652446200332793680010752000, 2932144456272256572796083896528773941130429279461761
Offset: 0
Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..8..6..4....0..9..7....6..4..0....0..6..4....9..0..8....6..4..0....8..0..0
..2..7..0....9..3..1....8..6..4....6..4..7....0..1..2....0..0..8....2..6..4
..3..6..4....0..1..0....2..0..0....0..3..0....0..0..0....0..0..2....6..4..0
-
b:= proc(n, l) option remember; local d, f, k;
d:= nops(l)/2; f:=false;
if n=0 then 1
elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
else for k to d while not l[k] do od; b(n, subsop(k=f, l))+
`if`(k1 and l[k+d+1],
b(n, subsop(k=f, k+d+1=f, l)), 0)+
`if`(k>1 and n>1 and l[k+d-1],
b(n, subsop(k=f, k+d-1=f, l)), 0)+
`if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
`if`(k b(n, [true$(n*2)]):
seq(a(n), n=0..10); # Alois P. Heinz, Jun 03 2014
-
b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join [l[[d+1 ;; 2d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; b[n, ReplacePart[l, k -> f]] + If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, k | k + d + 1 -> f]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, k | k + d - 1 -> f]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, k | k + d -> f]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, k | k + 1 -> f]], 0]]]; a[n_] := b[n, Array[True&, 2n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)
A211348
Number of ways to tile an n X n square with 1 X 1, 2 X 2 and 3 X 3 tiles.
Original entry on oeis.org
1, 1, 2, 6, 39, 467, 10290, 431842, 33702357, 4933399675, 1353257600290, 694985665826606, 668743276018647665, 1205268925168096642391, 4069023157203412697840109, 25732126785058509461002703360, 304814553338563601845965453449729
Offset: 0
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then 0 elif n=0 then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to min(k+2, nops(l)) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
od; s
fi
end:
a:= n-> b(n, [0$n]):
seq(a(n), n=0..10); # Alois P. Heinz, Feb 05 2013
A228267
Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1
The irregular triangle begins:
. r 1 2 3 4 ...
n,k
1,1 1
2,1 1
2,2 1 2
3,1 1
3,2 1 3
3,3 1 5 10
4,1 1
4,2 1 5
4,3 1 11 31
4,4 1 35 167 2098
5,1 1
5,2 1 8
5,3 1 21 76
5,4 1 93 635 15511
5,5 1 314 3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
._____. ._____. ._____.
|_|_|_| |_|_|_| |_|_|_|
|_|_|_| |_|_|_| |_|_|_|
._____. ._____. ._____.
| |_| | |_| | |_|
|___|_| |___|_| |___|_|
._____. ._____. ._____.
|_| | |_| | |_| |
|_|___| |_|___| |_|___|
A353777
Number of tilings of an n X n square using dominoes, monominoes and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 8, 163, 15623, 5684228, 8459468955, 50280716999785, 1202536689448371122, 115462301811597894998929, 44537596159273736617786474211, 69003082378039459280864860681919942, 429429579883061866326542598342441907826951, 10734684843612889640707750537898705644071715970757
Offset: 0
a(2) = 8:
.___. .___. .___. .___. .___. .___. .___. .___.
| | |_|_| |___| | | | |_|_| |___| |_| | | |_|
|___| |_|_| |___| |_|_| |___| |_|_| |_|_| |_|_| .
Comments