cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A067963 Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.

Original entry on oeis.org

2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Diagonal of A228683

Extensions

Terms a(15)-a(19) from Vaclav Kotesovec, May 01 2012

A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.

Original entry on oeis.org

2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Formula

Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)

Extensions

Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012

A201513 Number of ways to place n nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 0, 8, 79, 1974, 62266, 2484382, 119138166, 6655170642, 423677826986, 30242576462856, 2390359529372724, 207127434998494421, 19516867860507198208, 1986288643031862123264, 217094567491104327256049, 25357029929230564723578520, 3151672341378566296926684684
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Nov 29 2011): n^(2n)/n!*exp(-9/2).

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2017

A133791 Number of n X n binary matrices with every 1 adjacent to some 0 horizontally, vertically, diagonally or antidiagonally.

Original entry on oeis.org

1, 15, 417, 50625, 24879489, 48231228511, 373654052856545, 11546079143118274625, 1422756868491071266637985, 699232611373976058162941025423, 1370556061582419558173913152072112161, 10714096395475651010921722651799661109404545
Offset: 1

Views

Author

R. H. Hardin, Jan 05 2008

Keywords

Comments

Number of dominating sets in the n X n king graph. - Andrew Howroyd, May 10 2017

Crossrefs

Main diagonal of A218663.
Cf. A133515, A133556, A063443 (independent vertex sets).

Programs

Extensions

a(12) and beyond from Christian Sievers, Dec 03 2023

A067959 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.

Original entry on oeis.org

1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

a(13) from Vaclav Kotesovec, Aug 22 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15) from Sean A. Irvine, Jan 14 2024

A212269 Number of ways to place k non-attacking kings on an n X n cylindrical chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 5, 19, 205, 3011, 92875, 4763459, 459630701, 78223965193, 24270274906085, 13497818986883771, 13571363009654254429, 24562890586806439035377, 80199120146273882569630015, 471874707649862024071657639861, 5005895207027974222377733802848093
Offset: 1

Views

Author

Vaclav Kotesovec, May 12 2012

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.

Crossrefs

Formula

Limit n ->infinity (a(n))^(1/n^2) = 1.342643951124... (see A247413).

A220638 Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 1, 10, 369, 92801, 128171936, 1040315976961, 48590896359378961, 13140746227808545282304, 20540255065209806005525289313, 185661218973084382181156348510614065, 9703072851259276652446200332793680010752000, 2932144456272256572796083896528773941130429279461761
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Main diagonal of A220644.
Row sums of A243424. - Alois P. Heinz, Jun 04 2014
Number of matchings (i.e., Hosoya index) in the n X n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..8..6..4....0..9..7....6..4..0....0..6..4....9..0..8....6..4..0....8..0..0
..2..7..0....9..3..1....8..6..4....6..4..7....0..1..2....0..0..8....2..6..4
..3..6..4....0..1..0....2..0..0....0..3..0....0..0..0....0..0..2....6..4..0
		

Crossrefs

Cf. A239273 (perfect matchings), A063443 (independent vertex sets), A234622 (cycles).

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od; b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k b(n, [true$(n*2)]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join [l[[d+1 ;; 2d]], Array[True&, d]]], True, For[k = 1, !l[[k]], k++]; b[n, ReplacePart[l, k -> f]] + If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, k | k + d + 1 -> f]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, k | k + d - 1 -> f]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, k | k + d -> f]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, k | k + 1 -> f]], 0]]]; a[n_] := b[n, Array[True&, 2n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)

Extensions

a(10)-a(12) from Alois P. Heinz, Jun 03 2014

A211348 Number of ways to tile an n X n square with 1 X 1, 2 X 2 and 3 X 3 tiles.

Original entry on oeis.org

1, 1, 2, 6, 39, 467, 10290, 431842, 33702357, 4933399675, 1353257600290, 694985665826606, 668743276018647665, 1205268925168096642391, 4069023157203412697840109, 25732126785058509461002703360, 304814553338563601845965453449729
Offset: 0

Views

Author

Geoffrey H. Morley, Feb 05 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to min(k+2, nops(l)) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 05 2013

Extensions

a(7)-a(16) from Alois P. Heinz, Feb 05 2013

A228267 Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1

Views

Author

Keywords

Comments

The main diagonal T(n,n,n) is 1, 2, 10, 2098, 4006722, .... - R. J. Mathar and Rob Pratt, Nov 27 2017

Examples

			The irregular triangle begins:
.   r 1      2      3      4 ...
n,k
1,1   1
2,1   1
2,2   1      2
3,1   1
3,2   1      3
3,3   1      5     10
4,1   1
4,2   1      5
4,3   1     11     31
4,4   1     35    167   2098
5,1   1
5,2   1      8
5,3   1     21     76
5,4   1     93    635  15511
5,5   1    314   3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
  ._____.    ._____.    ._____.
  |_|_|_|    |_|_|_|    |_|_|_|
  |_|_|_|    |_|_|_|    |_|_|_|
  ._____.    ._____.    ._____.
  |   |_|    |   |_|    |   |_|
  |___|_|    |___|_|    |___|_|
  ._____.    ._____.    ._____.
  |_|   |    |_|   |    |_|   |
  |_|___|    |_|___|    |_|___|
		

Crossrefs

Cf. A219924.

Formula

T(1,1,r) = T(n,n,1) = 1. - R. J. Mathar, Dec 03 2017
T(2,2,r) = A000045(r+1). - R. J. Mathar, Dec 03 2017
T(3,3,r>=1) = 1, 5, 10, 31, ... with g.f. 1/(1-x-4*x^2-x^3). - R. J. Mathar, Dec 03 2017
T(4,4,r>=1) = 1, 35, 167, 2098, 15511, 151378, 1272179, 11574563, 100928230, 900224006, ... with TBD rational g.f. - R. J. Mathar, Dec 03 2017
T(n,n,2) = A063443(n). - R. J. Mathar, Dec 03 2017

Extensions

20 more terms from R. J. Mathar, Dec 03 2017

A353777 Number of tilings of an n X n square using dominoes, monominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 8, 163, 15623, 5684228, 8459468955, 50280716999785, 1202536689448371122, 115462301811597894998929, 44537596159273736617786474211, 69003082378039459280864860681919942, 429429579883061866326542598342441907826951, 10734684843612889640707750537898705644071715970757
Offset: 0

Views

Author

Alois P. Heinz, May 07 2022

Keywords

Examples

			a(2) = 8:
  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
  |   |  |_|_|  |___|  | | |  |_|_|  |___|  |_| |  | |_|
  |___|  |_|_|  |___|  |_|_|  |___|  |_|_|  |_|_|  |_|_| .
		

Crossrefs

Formula

a(n) = A352589(n,n).
Previous Showing 11-20 of 30 results. Next