cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A140314 Number of n X n binary matrices containing no more than two 1's in any 2 X 2 subblock.

Original entry on oeis.org

1, 2, 11, 195, 8969, 1232795, 471487297, 516844071813, 1603508113421239, 14148460147460008963, 354360105981877906958557, 25210728065407321182797745205, 5093486498660018140333056634922039
Offset: 0

Views

Author

R. H. Hardin, May 25 2008

Keywords

Comments

No more than 1 1 in any 2 X 2 subblock gives A063443.
No more than 3 1's in any 2 X 2 subblock gives A139810.

Crossrefs

A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0.

Original entry on oeis.org

2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000
Offset: 1

Views

Author

Vaclav Kotesovec, May 05 2012

Keywords

Comments

Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]

Formula

a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.

A275869 Number of nonequivalent ways to place k>=0 nonattacking kings on an n X n board.

Original entry on oeis.org

2, 2, 11, 51, 922, 25618, 1597350, 169413040, 33716225195, 11838480390673, 7588965091313449, 8705702554970941096, 18079208010076976255573, 67519585404524909086260614, 455193583190737164106702088892, 5527752160260327852724215089473548
Offset: 1

Views

Author

Heinrich Ludwig, Dec 11 2016

Keywords

Comments

Also number of nonequivalent ways to tile an n+1 X n+1 square with 1 X 1 and 2 X 2 tiles.
Also row sum of triangle A236679.
Rotations and reflections of a placement are not counted. If they are to be counted, see A063443.

Crossrefs

Extensions

a(10)-a(16) from Andrew Howroyd, May 30 2017

A335560 Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.

Original entry on oeis.org

1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
Offset: 1

Views

Author

Oluwatobi Jemima Alabi, Jun 14 2020

Keywords

Comments

It is assumed that 1 X 1 squares and 1 X 1 strips can be distinguished. - Alois P. Heinz, Feb 23 2022

Examples

			Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips:
   _ _ _
  |_ _| |
  | |_|_|
  |_|_ _|
		

Crossrefs

Cf. A063443 and A211348 (tiling an n X n square with smaller squares).
Cf. A028420 (tiling an n X n square with monomers and dimers).

Programs

  • Mathematica
    Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
  • PARI
    Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020

Formula

a(n) = 2*3^n + 12*2^n - 19, for n >= 3.
From Colin Barker, Jun 14 2020: (Start)
G.f.: x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
E.g.f.: 5 - 19*exp(x) +12 *exp(2*x) + 2*exp(3*x) - 10*x - 31*x^2/2. - Stefano Spezia, Aug 25 2025

A353934 Number of tilings of an n X n square using right trominoes, dominoes, and monominoes.

Original entry on oeis.org

1, 1, 11, 369, 83374, 90916452, 546063639624, 17259079054003609, 2916019543694306398589, 2620143594924539083433405392, 12541344781693990981151732534871036, 319608708168951734031266758322647453517098, 43373075269161087186367095378869660507262626652634
Offset: 0

Views

Author

Alois P. Heinz, May 11 2022

Keywords

Examples

			a(2) = 11:
  .___. .___. .___. .___. .___. .___. .___. .___. .___. .___. .___.
  |_|_| |___| | | | |_|_| |___| |_| | | |_| |_| | |_. | | ._| | |_|
  |_|_| |___| |_|_| |___| |_|_| |_|_| |_|_| |___| |_|_| |_|_| |___| .
		

Crossrefs

Formula

a(n) = A353877(n,n).

A141483 Number of n X n binary matrices, symmetric under horizontal and vertical reflection, with no more than 1 one in any 2 X 2 subblock.

Original entry on oeis.org

1, 2, 1, 5, 2, 35, 5, 314, 35, 6427, 314, 202841, 6427, 12727570, 202841, 1355115601, 12727570, 269718819131, 1355115601, 94707789944544, 269718819131, 60711713670028729, 94707789944544, 69645620389200894313
Offset: 0

Views

Author

R. H. Hardin, Aug 09 2008

Keywords

Comments

a(2n-1) = A063443(n+1). - Vaclav Kotesovec, May 01 2012
a(2n) = a(2n-3), for n>1. - Vaclav Kotesovec, Apr 01 2016

A179618 T(n,k) = Half the number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock diagonal sum differing from its antidiagonal sum by more than 2.

Original entry on oeis.org

5, 11, 11, 21, 35, 21, 43, 93, 93, 43, 85, 269, 314, 269, 85, 171, 747, 1213, 1213, 747, 171, 341, 2115, 4375, 6427, 4375, 2115, 341, 683, 5933, 16334, 31387, 31387, 16334, 5933, 683, 1365, 16717, 59925, 159651, 202841, 159651, 59925, 16717, 1365, 2731
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Comments

T(n,k) apparently is also the number of ways to tile an (n+2) X (k+2) rectangle with 1 X 1 and 2 X 2 tiles.

Examples

			Table starts
     5     11      21        43         85         171           341
    11     35      93       269        747        2115          5933
    21     93     314      1213       4375       16334         59925
    43    269    1213      6427      31387      159651        795611
    85    747    4375     31387     202841     1382259       9167119
   171   2115   16334    159651    1382259    12727570     113555791
   341   5933   59925    795611    9167119   113555791    1355115601
   683  16717  221799   4005785   61643709  1029574631   16484061769
  1365  47003  817280  20064827  411595537  9258357134  198549329897
  2731 132291 3018301 100764343 2758179839 83605623809 2403674442213
Some solutions for 6 X 6:
  0 2 0 2 0 2    0 1 0 2 1 2    0 2 0 2 0 2    0 1 0 2 0 1
  2 0 2 0 2 1    2 0 2 0 2 0    2 0 1 0 1 0    2 0 2 0 2 0
  0 2 0 2 0 2    1 2 1 2 0 2    0 2 0 2 0 2    0 2 0 2 0 2
  2 0 2 0 2 1    2 0 2 0 1 0    1 0 2 0 2 0    1 0 2 0 2 0
  0 2 0 2 0 2    0 2 0 2 0 2    0 2 0 2 0 2    0 2 1 2 1 2
  1 0 1 0 1 0    2 1 2 1 2 0    2 1 2 1 2 1    2 0 2 0 2 0
		

Crossrefs

Diagonal is A063443(n+2).
Column 1 is A001045(n+3).
Column 2 is A054854(n+2).
Column 3 is A054855(n+2).
Column 4 is A063650(n+2).
Column 5 is A063651(n+2).
Column 6 is A063652(n+2).
Column 7 is A063653(n+2).
Column 8 is A063654(n+2).

A288956 Number of maximal independent vertex sets (and minimal vertex covers) in the n X n king graph.

Original entry on oeis.org

1, 4, 8, 79, 544, 8197, 201611, 6214593, 391918650, 32239887128, 4599025630995, 1018245217588836, 346578151637999287, 193445218205732588935, 165199496607694525364163, 226636538088997406396236072, 488063150616514603623041818756, 1655950305544572458601638523072809
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Main diagonal of A332347.
Cf. A197048 (grid graph), A063443 (independent sets), A193580, A133791 (dominating sets).

Extensions

a(9)-a(18) from Andrew Howroyd, Jun 26 2017

A337024 Number of ways to tile a 2n X 2n square with 1 X 1 white and n X n black squares.

Original entry on oeis.org

16, 35, 60, 91, 128, 171, 220, 275, 336, 403, 476, 555, 640, 731, 828, 931, 1040, 1155, 1276, 1403, 1536, 1675, 1820, 1971, 2128, 2291, 2460, 2635, 2816, 3003, 3196, 3395, 3600, 3811, 4028, 4251, 4480, 4715, 4956, 5203
Offset: 1

Views

Author

Yutong Li, Aug 11 2020

Keywords

Examples

			For example, here are two of the 35 ways to tile a 4 X 4 square with 1 X 1 and 2 X 2 squares (where we have dropped the colors):
._______        _______
|_|_|   |      |_|_|   |
|   |___|      |_|_|___|
|___|   |      |   |   |
|_|_|___|      |_ _|___|
		

Crossrefs

Cf. A063443.

Programs

  • Mathematica
    Table[3 n^2 + 10 n + 3, {n, 50}] (* Wesley Ivan Hurt, Nov 07 2020 *)

Formula

a(n) = 3*n^2 + 10*n + 3.
From Stefano Spezia, Aug 18 2020: (Start)
O.g.f.: x*(16 - 13*x + 3*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(3 + 13*x + 3*x^2) - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited by Greg Dresden, Aug 18 2020

A271081 Number of ways to tile an n X n X n cube with 1 X 1 X 1 and 2 X 2 X 2 tiles.

Original entry on oeis.org

1, 2, 9, 2089, 3144692, 2748613397101, 107008949868167431857
Offset: 1

Views

Author

Johan Nilsson, Mar 30 2016

Keywords

Examples

			There are 9 ways to tile a cube of side length 3 with cubes of side length 1 and 2, so a(3) = 9.
		

Crossrefs

Cf. A063443 (a 2D version of this tiling count).
Previous Showing 21-30 of 30 results.