cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A303538 Expansion of ((1 + 8*x)/(1 - 8*x))^(1/8).

Original entry on oeis.org

1, 2, 2, 44, 86, 1724, 4244, 80024, 223718, 4033132, 12260988, 213418728, 689489148, 11663520216, 39489621864, 652201870896, 2292944058246, 37099981422156, 134565259916012, 2138626858270408, 7964821656989332, 124595233474799752, 474734644904361112
Offset: 0

Views

Author

Seiichi Manyama, Apr 25 2018

Keywords

Crossrefs

Programs

  • Maxima
    a[n]:=if n<2 then n+1 else (2*a[n-1]+64*(n-2)*a[n-2])/n;
    makelist(a[n],n,0,1000); /* Tani Akinari, Apr 29 2018 */
  • PARI
    N=66; x='x+O('x^N); Vec(((1+8*x)/(1-8*x))^(1/8))
    

Formula

a(n) ~ 2^(3*n + 1/8) / (Gamma(1/8) * n^(7/8)). - Vaclav Kotesovec, Apr 26 2018
n*a(n)-2*a(n-1)-64*(n-2)*a(n-2)=0. - Tani Akinari, Apr 29 2018

A360321 a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))

Formula

G.f.: sqrt( (1-5*x)/(1-9*x) ).
n*a(n) = 2*(7*n-6)*a(n-1) - 45*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/5)^i * a(j) * a(i-j) = (9/5)^n.
a(n) ~ 2 * 3^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A300787 Number of integer partitions of n in which the even parts appear as often at even positions as at odd positions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 15, 21, 27, 38, 47, 63, 79, 106, 130, 170, 209, 272, 330, 422, 512, 653, 784, 986, 1183, 1482, 1765, 2191, 2604, 3218, 3804, 4666, 5504, 6726, 7898, 9592, 11240, 13602, 15880, 19122, 22277, 26733, 31048, 37102, 43003, 51232, 59220
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Examples

			The a(7) = 8 partitions: (7), (511), (421), (331), (322), (31111), (22111), (1111111). Missing are: (61), (52), (43), (4111), (3211), (2221), (211111).
		

Crossrefs

Even- and odd-indexed terms are A006330 and A001523 respectively, which add up to A000712.

Programs

  • Mathematica
    cobal[y_]:=Sum[(-1)^x,{x,Join@@Position[y,_?EvenQ]}];
    Table[Length[Select[IntegerPartitions[n],cobal[#]===0&]],{n,0,50}]

A325699 Number of distinct even prime indices of n minus the number of distinct odd prime indices of n.

Original entry on oeis.org

0, -1, 1, -1, -1, 0, 1, -1, 1, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, -2, 2, -2, -1, 0, -1, 0, 1, 0, 1, -1, -1, -1, 0, -2, 0, 0, 1, 0, 2, -2, -1, 1, 1, -2, 0, -2, -1, 0, 1, -2, 0, 0, 1, 0, -2, 0, 2, 0, -1, -1, 1, -2, 2, -1, 0, -1, -1, -2, 0, -1, 1, 0, -1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

  • Mathematica
    Table[Total[(-1)^PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]

Formula

G.f.: Sum_{k>=1} (-1)^k * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 12 2020
Additive with a(p^e) = (-1)^primepi(p). - Amiram Eldar, Jun 17 2024

A360319 a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))

Formula

G.f.: sqrt( (1-4*x)/(1-8*x) ).
n*a(n) = 2*(6*n-5)*a(n-1) - 32*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/4)^i * a(j) * a(i-j) = 2^n.
a(n) ~ 2^(3*n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 8^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360322 a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))

Formula

G.f.: sqrt( (1+5*x)/(1+x) ).
n*a(n) = 2*(-3*n+4)*a(n-1) - 5*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (-1/5)^i * a(j) * a(i-j) = (1/5)^n.
a(n) = 2 * (-1)^(n+1) * A007317(n) for n > 0.
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (-1/4)^n * Sum_{k=0..n} 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A182027 a(n) = number of n-lettered words in the alphabet {1, 2} with as many occurrences of the substring (consecutive subword) [1, 1] as of [2, 2].

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440, 9075135300, 18150270600, 35345263800
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2012

Keywords

Crossrefs

Apart from initial terms, same as A063886.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1,2$3][n+1],
          (2*a(n-1)+4*(n-3)*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..39);  # Alois P. Heinz, May 11 2024

Formula

G.f.: 1 + x + x*sqrt((1+2*x)/(1-2*x))= 1 + x + x/G(0), where G(k)= 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f.: 1 + x - (x*BesselI(1, 2*x)*(2 + Pi*(1 + 2*x)*StruveL(0, 2*x)) - x*(1 + 2*x)*BesselI(0, 2*x)*(2 + Pi*StruveL(1, 2*x)))/2. - Stefano Spezia, May 11 2024

A305031 Expansion of ((1 + 2*x)/(1 - 2*x))^(3/2).

Original entry on oeis.org

1, 6, 18, 44, 102, 228, 500, 1080, 2310, 4900, 10332, 21672, 45276, 94248, 195624, 404976, 836550, 1724580, 3549260, 7293000, 14965236, 30669496, 62783448, 128388624, 262303132, 535422888, 1092063000, 2225728400, 4533175800, 9226818000, 18769219920, 38158909920
Offset: 0

Views

Author

Seiichi Manyama, May 24 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ... then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

((1 + 2*x)/(1 - 2*x))^(m/2): A063886 (m=1), this sequence (m=3), A241204 (m=4).

Programs

  • Magma
    [n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 2*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Mathematica
    CoefficientList[Series[((1+2*x)/(1-2*x))^(3/2), {x,0,40}], x] (* G. C. Greubel, Jun 07 2023 *)
  • PARI
    N=66; x='x+O('x^N); Vec(((1+2*x)/(1-2*x))^(3/2))
    
  • SageMath
    @CachedFunction
    def a(n): # b = A305031
        if n<2: return 6^n
        else: return 2*(3*a(n-1) + 2*(n-2)*a(n-2))//n
    [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

n*a(n) = 6*a(n-1) + 4*(n-2)*a(n-2) for n > 1.
a(n) ~ 2^(n + 5/2) * sqrt(n/Pi). - Vaclav Kotesovec, May 28 2018

A092266 Expansion of (1+4x)/AGM(1+4x,1-4x) where AGM denotes the arithmetic-geometric mean.

Original entry on oeis.org

1, 4, 4, 16, 36, 144, 400, 1600, 4900, 19600, 63504, 254016, 853776, 3415104, 11778624, 47114496, 165636900, 662547600, 2363904400, 9455617600, 34134779536, 136539118144, 497634306624, 1990537226496, 7312459672336
Offset: 0

Views

Author

Michael Somos, Feb 16 2004

Keywords

Programs

  • Mathematica
    CoefficientList[Series[2*(1 + 4*x)*EllipticK[1 - (1 + 4*x)^2/(1 - 4*x)^2] / (Pi*(1 - 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    a(n)=((n==0)+2*binomial(n-1,(n-1)\2))^2;
    
  • PARI
    Vec( 1/agm(1,(1-4*x)/(1+4*x)+O(x^66)) ) \\ Joerg Arndt, Aug 14 2013

Formula

G.f.: (1+4x)/AGM(1+4x, 1-4x) where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
a(n) = A063886(n)^2.
a(2n) = A002894(n); a(2n+1) = 4*a(2n).
a(n) ~ 2^(2*n + 1) / (Pi*n). - Vaclav Kotesovec, Sep 27 2019

A304940 Expansion of ((1 + 4*x)/(1 - 4*x))^(1/2).

Original entry on oeis.org

1, 4, 8, 32, 96, 384, 1280, 5120, 17920, 71680, 258048, 1032192, 3784704, 15138816, 56229888, 224919552, 843448320, 3373793280, 12745441280, 50981765120, 193730707456, 774922829824, 2958796259328, 11835185037312, 45368209309696, 181472837238784
Offset: 0

Views

Author

Seiichi Manyama, May 22 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

((1 + 4*x)/(1 - 4*x))^(m/4): A303537 (m=1), this sequence (m=2), A304941 (m=3), A081654 (m=4).
Cf. A063886.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(1/2))

Formula

n*a(n) = 4*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
a(n) = 2^n * A063886(n).
Previous Showing 21-30 of 39 results. Next