cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A003963 Fully multiplicative with a(p) = k if p is the k-th prime.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 6, 1, 7, 4, 8, 3, 8, 5, 9, 2, 9, 6, 8, 4, 10, 6, 11, 1, 10, 7, 12, 4, 12, 8, 12, 3, 13, 8, 14, 5, 12, 9, 15, 2, 16, 9, 14, 6, 16, 8, 15, 4, 16, 10, 17, 6, 18, 11, 16, 1, 18, 10, 19, 7, 18, 12, 20, 4, 21, 12, 18, 8, 20, 12, 22, 3, 16, 13, 23, 8, 21, 14, 20, 5
Offset: 1

Views

Author

Keywords

Comments

a(n) is the Matula number of the rooted tree obtained from the rooted tree T having Matula number n, by contracting its edges that emanate from the root. Example: a(49) = 16. Indeed, the rooted tree with Matula number 49 is the tree obtained by merging two copies of the tree Y at their roots. Contracting the two edges that emanate from the root, we obtain the star tree with 4 edges having Matula number 16. - Emeric Deutsch, May 01 2015
The Matula (or Matula-Goebel) number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, May 01 2015
a(n) is the product of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 18; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2*3*3 = 18. - Emeric Deutsch, Jun 03 2015
Let T be the free-commutative-monoid monad on the category Set. Then for each set N we have a canonical function m from TTN to TN. If we let N = {1, 2, 3, ...} and enumerate the primes in the usual way (A000040) then unique prime factorization gives a canonical bijection f from N to TN. Then the sequence is given by a(n) = f^-1(m(T(f)(f(n)))). - Oscar Cunningham, Jul 18 2019

Crossrefs

Programs

  • Haskell
    a003963 n = product $
       zipWith (^) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 30 2012
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then pi(n) else a(r(n))*a(s(n)) end if end proc: seq(a(n), n = 1 .. 88);
    # Alternative:
    seq(mul(numtheory:-pi(t[1])^t[2], t=ifactors(n)[2]), n=1..100); # Robert Israel, May 01 2015
  • Mathematica
    a[n_] := Times @@ (PrimePi[ #[[1]] ]^#[[2]]& /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 1, 88}]
  • PARI
    a(n)=f=factor(n);prod(i=1,#f[,1],primepi(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Apr 26 2012; corrected by Rémy Sigrist, Jul 18 2019
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i, 1] = primepi(f[i, 1]); ); factorback(f); } \\ Michel Marcus, Feb 08 2015
    
  • PARI
    A003963(n)={n=factor(n); n[,1]=apply(primepi,n[,1]); factorback(n)} \\ M. F. Hasler, May 03 2018
    
  • Python
    from math import prod
    from sympy import primepi, factorint
    def A003963(n): return prod(primepi(p)**e for p, e in factorint(n).items()) # Chai Wah Wu, Nov 17 2022

Formula

If n = product prime(k)^e(k) then a(n) = product k^e(k).
Multiplicative with a(p^e) = A000720(p)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A049084(A027748(n,k))^A124010(n,k). - Reinhard Zumkeller, Jun 30 2012
Rec. eq.: a(1)=1, a(k-th prime) = a(k), a(rs)=a(r)a(s). The Maple program is based on this. - Emeric Deutsch, May 01 2015
a(n) = A243504(A241909(n)) = A243499(A156552(n)) = A227184(A243354(n)) - Antti Karttunen, Mar 07 2017

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A182860 Number of distinct prime signatures represented among the unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 4, 2, 4, 3, 4, 2, 4, 2, 3, 4, 4, 3, 4, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

a(n) = number of members m of A025487 such that d(m^k) divides d(n^k) for all values of k. (Here d(n) represents the number of divisors of n, or A000005(n).)
a(n) depends only on prime signature of n (cf. A025487).

Examples

			60 has 8 unitary divisors (1, 3, 4, 5, 12, 15, 20 and 60). Primes 3 and 5 have the same prime signature, as do 12 (2^2*3) and 20 (2^2*5); each of the other four numbers listed is the only unitary divisor of 60 with its particular prime signature.  Since a total of 6 distinct prime signatures appear among the unitary divisors of 60, a(60) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Union@ Map[Sort[FactorInteger[#] /. {p_, e_} /; p > 0 :> If[p == 1, 0, e]] &, Select[Divisors@ n, CoprimeQ[#, n/#] &]], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A181819(n) = {my(f=factor(n)); prod(k=1, #f~, prime(f[k, 2])); }; \\ From A181819
    A182860(n) = numdiv(A181819(n)); \\ Antti Karttunen, Jul 19 2017

Formula

a(n) = A000005(A181819(n)).
If the canonical factorization of n into prime powers is Product p^e(p), then the formula for d(n^k) is Product_p (ek + 1). (See also A146289, A146290.)
a(n) = A064553(A328830(n)). - Antti Karttunen, Apr 29 2022

A080444 Write n A001055(n) times.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 24, 24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 28, 29, 30, 30, 30, 30, 30, 31, 32, 32, 32
Offset: 1

Views

Author

Alford Arnold, Mar 21 2003

Keywords

Comments

Consider A001055(24) = 7. The seven ways of factoring 24 can be encoded as 24,30,44,51,55,62 and 83 using A064553.
T(n,k) = A064553(A080688(n,k)) = n for k=1..A001055(n). - Reinhard Zumkeller, Oct 01 2012

Examples

			A001055(12) = 4 so a(18) through a(21) = 12,12,12,12
		

Programs

  • Haskell
    a080444 n k = a080444_tabf !! (n-1) !! (k-1)
    a080444_row n = a080444_tabf !! (n-1)
    a080444_tabf = zipWith replicate a001055_list [1..]
    a080444_list = concat a080444_tabf
    -- Reinhard Zumkeller, Oct 01 2012

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Keyword tabf added by Reinhard Zumkeller, Oct 01 2012

A128629 A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1

Views

Author

Alford Arnold, Mar 29 2007

Keywords

Comments

The array can be constructed by beginning with A007318 (Pascal's triangle) placing each diagonal on a prime row. The other rows are filled in by mapping the prime factorization of the row number to the known sequences on the prime rows and multiplying term by term.

Examples

			Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
		

Crossrefs

Cf. A064553 (second diagonal), A080688 (second diagonal resorted).

Programs

  • Maple
    A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009

Extensions

A-number added to each row of the examples by R. J. Mathar, Sep 09 2009

A328879 If n = Product (p_j^k_j) then a(n) = Product (pi(p_j) + 1), where pi = A000720.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 5, 2, 3, 8, 6, 6, 7, 10, 12, 2, 8, 6, 9, 8, 15, 12, 10, 6, 4, 14, 3, 10, 11, 24, 12, 2, 18, 16, 20, 6, 13, 18, 21, 8, 14, 30, 15, 12, 12, 20, 16, 6, 5, 8, 24, 14, 17, 6, 24, 10, 27, 22, 18, 24, 19, 24, 15, 2, 28, 36, 20, 16, 30, 40, 21, 6, 22, 26, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 29 2019

Keywords

Comments

a(n) is the product of indices of distinct prime factors of n if 1 is considered as a prime (see A008578).

Examples

			a(36) = 6 because 36 = 2^2 * 3^2 = prime(1)^2 * prime(2)^2 and (1 + 1) * (2 + 1) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((PrimePi[#[[1]]] + 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]
  • PARI
    a(n)={my(f=factor(n)[,1]); prod(i=1, #f, 1 + primepi(f[i]))} \\ Andrew Howroyd, Oct 29 2019

A050298 Triangle read by rows: T(n,k) = p(r), where r is the (n-k+1)-th number such that A001222(r+1) = k, and p(r) is the r-th prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 13, 19, 31, 47, 29, 23, 59, 83, 127, 37, 41, 67, 149, 211, 307, 53, 43, 101, 167, 353, 499, 709, 61, 71, 103, 241, 401, 823, 1153, 1613, 79, 73, 109, 257, 587, 937, 1873, 2647, 3659, 107, 89, 179, 277, 607, 1319, 2113, 4201, 5843, 8147
Offset: 1

Views

Author

Alford Arnold, Apr 09 2003

Keywords

Comments

The first column is A055003 and the main diagonal is A051438. When viewed as a sequence, this is a permutation of the prime numbers.

Examples

			a(14) = T(5,4) = p(23) = 83 because A001222(23+1) = A001222(24) = 4 since 24 has four prime factors, and this is the (5-4+1) = 2nd number with A001222 = 4.
The table begins:
2
3  5
7  11 17
13 19 31 47
29 23 59 83  127
37 41 67 149 211 307
...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A050298ind := proc(n,k) option remember: local f,m: if(n=k)then return 2^n-1: fi: for m from procname(n-1,k)+1 do if(bigomega(m+1)=k)then return m: fi: od: end: for n from 1 to 6 do seq(ithprime(A050298ind(n,k)),k=1..n);od; # Nathaniel Johnston, May 07 2011

Extensions

Better name and extended by Nathaniel Johnston, May 07 2011

A064601 a(n) = # { p | A064558(k) = p prime and k <= n}.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 22 2001

Keywords

Comments

As in A064553 primes occur in A064558 in natural order but are far less dense.

Crossrefs

Extensions

Data corrected by Sean A. Irvine, Jul 18 2023

A133928 Associate each least prime signature value with the corresponding prime number.

Original entry on oeis.org

1, 2, 5, 11, 17, 31, 47, 83, 109, 127, 149, 211, 277, 307, 353, 499, 653, 709, 823, 1063, 1153, 1289, 1319, 1499, 1613, 1873, 2417, 2647, 2897, 3001, 3407, 3659, 4201, 5441, 5843, 6469, 6691, 6991, 7559, 8147, 8669, 9293, 10267, 10613, 12007, 12899, 14321
Offset: 1

Views

Author

Alford Arnold, Sep 29 2007

Keywords

Examples

			Let a(1) = 1 then note
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... A000027
1 2 3 4 4 6 5 8 9 8 6 12 7 6 12 16 8 ... A064553
a(n) is formed by choosing the least prime signatures in row two which map to primes in row one yielding 1 2 5 11 17 ... since A025487 = 1 2 4 6 8 ...
		

Crossrefs

Formula

a(n) = A000040[A025487(n-1)-1], n>1. - R. J. Mathar, Oct 09 2007

Extensions

More terms from R. J. Mathar, Oct 09 2007
Previous Showing 11-19 of 19 results.