cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A180666 Golden Triangle sums: a(n)=a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.

Original entry on oeis.org

0, 1, 2, 6, 15, 41, 106, 279, 729, 1911, 5001, 13095, 34281, 89752, 234971, 615165, 1610520, 4216400, 11038675, 28899630, 75660210, 198081006, 518582802, 1357667406, 3554419410, 9305590831, 24362353076, 63781468404
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) are the Gi2 sums of the Golden Triangle A180662. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Programs

  • Maple
    nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: a(2):=2: a(3):=6: for n from 4 to nmax do a(n):=a(n-4)+A001654(n) od: seq(a(n),n=0..nmax);
    A180666 := proc(n)
        option remember;
        if n <=3 then
            op(n+1,[0,1,2,6]) ;
        else
            procname(n-4)+A001654(n) ;
        end if;
    end proc:
    seq(A180666(n),n=0..100 ) ; # R. J. Mathar, Aug 18 2016
  • Mathematica
    Take[Total@{#, PadLeft[Drop[#, -4], Length@ #]}, Length@ # - 4] &@ Table[Times @@ Fibonacci@ {n, n + 1}, {n, 0, 31}] (* or *)
    CoefficientList[Series[(-x)/((x^2 - 3 x + 1) (x - 1) (x + 1)^2 (x^2 + 1)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 18 2016 *)

Formula

a(n) = a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
G.f.: (-x)/((x^2-3*x+1)*(x-1)*(x+1)^2*(x^2+1)).
a(n) = Sum_{k=0..floor(n/4)} A180662(n-3*k,n-4*k).
120*a(n) = 8*A001519(n) -10*A087960(n) -9*(-1)^n -15 -6*(n+1)*(-1)^n. - R. J. Mathar, Aug 18 2016

A202503 Fibonacci self-fission matrix, by antidiagonals.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.

Examples

			Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
		

Crossrefs

Programs

  • Mathematica
    n = 14;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
    P = P1[[Range[2, n], Range[1, n]]];
    F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
    TableForm[P]  (* A202502, modified lower triangular Fibonacci array *)
    TableForm[Q]  (* A202451, upper tri. Fibonacci array *)
    TableForm[F]  (* A202503, Fibonacci fission array *)

A096979 Sum of the areas of the first n+1 Pell triangles.

Original entry on oeis.org

0, 1, 6, 36, 210, 1225, 7140, 41616, 242556, 1413721, 8239770, 48024900, 279909630, 1631432881, 9508687656, 55420693056, 323015470680, 1882672131025, 10973017315470, 63955431761796, 372759573255306, 2172602007770041
Offset: 0

Views

Author

Paul Barry, Jul 17 2004

Keywords

Comments

Convolution of A059841(n) and A001109(n+1).
Partial sums of A084158.

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{5,5,-1},{0,1,5},30]] (* Harvey P. Dale, Sep 07 2011 *)
    LinearRecurrence[{6, 0, -6, 1},{0, 1, 6, 36},22] (* Ray Chandler, Aug 03 2015 *)

Formula

G.f.: x/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = (3-2*sqrt(2))^n*(3/32-sqrt(2)/16)+(3+2*sqrt(2))^n*(sqrt(2)/16+3/32)-(-1)^n/16-1/8.
a(n) = Sum_{k=0..n} (sqrt(2)*(sqrt(2)+1)^(2*k)/8-sqrt(2)*(sqrt(2)-1)^(2*k)/8)*(1+(-1)^(n-k))/2.
a(n) = Sum_{k=0..n} A000129(k)*A000129(k+1)/2. [corrected by Jason Yuen, Jan 14 2025]
a(n) = (A001333(n+1)^2 - 1)/8 = ((A000129(n) + A000129(n+1))^2 - 1)/8. - Richard R. Forberg, Aug 25 2013
a(n) = A002620(A000129(n+1)) = A000217(A048739(n-1)), n > 0. - Ivan N. Ianakiev, Jun 21 2014

A282464 a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.

Original entry on oeis.org

0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
Offset: 0

Views

Author

Bruno Berselli, Feb 16 2017

Keywords

Crossrefs

Cf. A000045.
Partial sums of A169630.
Cf. A014286: partial sums of i*Fibonacci(i).
Cf. A064831: partial sums of (n+1-i)*Fibonacci(i)^2.

Programs

  • Magma
    [&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
  • Maple
    with(combinat): P:=proc(q) local a,n; a:=0; print(a); for n from 1 to q do
    a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
  • Mathematica
    a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
    LinearRecurrence[{5,-4,-10,10,4,-5,1},{0,1,3,15,51,176,560},30] (* Harvey P. Dale, May 15 2021 *)
  • Maxima
    makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30);
    
  • PARI
    a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
    
  • Sage
    [sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
    

Formula

O.g.f.: x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 - x)*(1 + x)^2*(1 - 3*x + x^2)^2).
a(n) = 5*a(n-1) - 4*a(n-2) - 10*a(n-3) + 10*a(n-4) + 4*a(n-5) - 5*a(n-6) + a(n-7).
a(n) = ((n-1)*Fibonacci(n) + n*Fibonacci(n-1))*Fibonacci(n) + (1 - (-1)^n)/2.

A080145 a(n) = Sum_{m=1..n} Sum_{i=1..m} F(i)*F(i+1) where F(n)=Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 4, 13, 37, 101, 269, 710, 1865, 4890, 12810, 33546, 87834, 229963, 602062, 1576231, 4126639, 10803695, 28284455, 74049680, 193864595, 507544116, 1328767764, 3478759188, 9107509812, 23843770261, 62423800984, 163427632705
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003

Keywords

Comments

This is the 2-fold convolution of A001654 with the sequence 1,1,1,....
Equivalently, partial sums of A064831 which is the partial sums of A001654. - Joerg Arndt, Oct 01 2021
a(n) is the number of permutations p in Sn(321) such that p^(-1) has exactly one left peak. See Troyka and Zhuang. - Michel Marcus, Oct 01 2021

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> (4*F(n+1)*F(n+2)-2*n-3-(-1)^n)/4); # G. C. Greubel, Jul 23 2019
  • Magma
    [(4*Lucas(2*n+3)+(-1)^(n+1)-10*n-15)/20: n in [0..30]]; // Vincenzo Librandi, Aug 22 2017
    
  • Mathematica
    CoefficientList[Series[x/((1-2x-2x^2+x^3)(1-x)^2), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
    With[{F=Fibonacci}, Table[(4*F[n+1]*F[n+2]-2*n-3-(-1)^n)/4, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    L(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=(4*L(2*n+3)-(-1)^n-10*n-15)/20 \\ Charles R Greathouse IV, Aug 26 2017
    
  • Sage
    f=fibonacci; [(4*f(n+1)*f(n+2)-2*n-3-(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = F(n+1)*F(n+2) - floor((n+2)/2).
G.f.: x/((1 - 2*x - 2*x^2 + x^3)*(1-x)^2).
a(n) = (4*Lucas(2*n + 3) + (-1)^(n+1) - 10*n - 15)/20. - Ehren Metcalfe, Aug 21 2017
a(n) = (4*Fibonacci(n+1)*Fibonacci(n+2) - 2*n - 3 - (-1)^n)/4. - G. C. Greubel, Jul 23 2019
a(n) = Sum_{j=1..n} j*F(n+1-j)*F(n+2-j). - Michael A. Allen, Jan 07 2022

A193917 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 3, 6, 9, 3, 5, 9, 15, 24, 5, 8, 15, 24, 40, 64, 8, 13, 24, 39, 64, 104, 168, 13, 21, 39, 63, 104, 168, 273, 441, 21, 34, 63, 102, 168, 272, 441, 714, 1155, 34, 55, 102, 165, 272, 440, 714, 1155, 1870, 3025, 55, 89, 165, 267, 440, 712, 1155
Offset: 0

Views

Author

Clark Kimberling, Aug 09 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. (Fusion is defined at A193822; fission, at A193742; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A193917:
1
1...1
1...2...3
2...3...6...9
3...5...9...15...24
5...8...15..24...40...64
8...13..24..39...64...104..168
13..21..39..63...104..168..273..441
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
col 7: A022355
col 8: A022355
right edge, w(n,n): A064831
w(n,n-1): A001654
w(n,n-2): A064831
w(n,n-3): A059840
w(n,n-4): A080097
w(n,n-5): A080143
w(n,n-6): A080144
Suppose n is an even positive integer and w(n+1,x) is the polynomial matched to row n+1 of A193917 as in the Mathematica program (and definition of fusion at A193722), where the first row is counted as row 0.

Examples

			First six rows:
1
1...1
1...2...3
2...3...6....9
3...5...9....15...24
5...8...15...24...40...64
		

Crossrefs

Programs

  • Mathematica
    z = 12;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193917 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193918 *)

A194000 Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0

Views

Author

Clark Kimberling, Aug 11 2011

Keywords

Comments

See A193917 for the self-fusion of the same sequence of polynomials. (Fusion is defined at A193822; fission, at A193842; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
...
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A194000:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
21...34...63...102..168...272...441
34...55...102..165..272...440...714..1155
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
right edge, d(n,n): A064831
d(n,n-1): A059840
d(n,n-2): A080097
d(n,n-3): A080143
d(n,n-4): A080144
...
Suppose n is an odd positive integer and d(n+1,x) is the polynomial matched to row n+1 of A194000 as in the Mathematica program (and definition of fission at A193842), where the first row is counted as row 0.

Examples

			First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
		

Crossrefs

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A194000 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* A194001 *)

A230447 T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0

Views

Author

Johannes W. Meijer, Oct 19 2013

Keywords

Comments

The terms in the right hand columns of triangle T(n, k) and the terms in the rows of the square array Tsq(n, k) represent the Kn1p sums of the ‘Races with Ties’ triangle A035317.
For the definitions of the Kn1p sums see A180662. This sequence is related to A230448.
The first few row sums are: 1, 2, 6, 14, 32, 68, 144, 299, 616, 1258, 2559, 5185, 10478, … .

Examples

			The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.
n/k 0   1   2    3    4     5     6     7
------------------------------------------------
0|  1
1|  1,  1
2|  2,  2,  2
3|  2,  4,  5,   3
4|  3,  6,  9,   8,   6
5|  3,  9, 16,  17,  14,    9
6|  4, 12, 25,  33,  32,   23,    15
7|  4, 16, 38,  58,  65,   55,    39,   24
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0   1   2    3    4     5     6     7
------------------------------------------------
0|  1,  1,  2,   3,   6,    9,   15,   24
1|  1,  2,  5,   8,  14,   23,   39,   63
2|  2,  4,  9,  17,  32,   55,   94,  157
3|  2,  6, 16,  33,  65,  120,  215,  372
4|  3,  9, 25,  58, 124,  244,  459,  831
5|  3, 12, 38,  96, 220,  464,  924, 1755
6|  4, 16, 54, 150, 371,  835, 1759, 3514
7|  4, 20, 75, 225, 596, 1431, 3191, 6705
		

Crossrefs

Programs

  • Maple
    T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
    T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
T(n, k) = sum(A035317(n-i, n-k+i), i = 0..floor(k/2)), n >= 0 and 0 <= k <= n.
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
Tsq(n, k) = sum(A035317(n+k-i, n+i), i=0..floor(k/2)), n >= 0 and k >= 0.
Tsq(n, k) = A080239(2*n+k+1) - sum(A035317(2*n+k-i, i), i=0..n-1).
The G.f. generates the terms in the n-th row of the square array Tsq(n, k).
G.f.: a(n)/(4*(x-1)) + 1/(4*(x+1)) + (-1)^n*(x+2)/(10*(x^2+1)) - (A000032(2*n+3) + A000032(2*n+2)*x)/(5*(x^2+x-1)) + sum((-1)^(k+1) * A064831(n-k+1)/((x-1)^k), k= 2..n), n >= 0, with a(n) = A064831(n+1) + 2*A064831(n) - 2*A064831(n-1) + A064831(n-2).

A096978 Sum of the areas of the first n Jacobsthal rectangles.

Original entry on oeis.org

0, 1, 4, 19, 74, 305, 1208, 4863, 19398, 77709, 310612, 1242907, 4970722, 19884713, 79535216, 318148151, 1272578046, 5090341317, 20361307020, 81445344595, 325781145370, 1303125047521, 5212499258024, 20849998896239, 83399991856694
Offset: 0

Views

Author

Paul Barry, Jul 17 2004

Keywords

Crossrefs

Programs

  • Magma
    [8*4^n/27-2*(-2)^n/27-(n+2)/9: n in [0..30]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    LinearRecurrence[{4,3,-14,8},{0,1,4,19},30] (* or *) Table[(2^(2n+1)-3n - 3+(-2)^n)/27,{n,30}] (* Harvey P. Dale, Aug 08 2011 *)

Formula

G.f.: x/((1-x)^2*(1+2*x)*(1-4*x)).
a(n) = 8*4^n/27 - 2*(-2)^n/27 - (n+2)/9;
a(n) = Sum_{k=0..n} (2*4^k/3 + (-2)^k/3)*(n-k).
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
a(n) = Sum_{k=0..n} A001045(k)*A001045(k+1).
a(n-1) = Sum_{k=0..n} (-1)^(k+1)*A001045(k)*A001045(2*(n-k)). - Paul Barry, Aug 11 2009

A110033 A characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, 0, 3, -8, 1, 0, 0, 9, -21, 1, 0, 0, 0, 24, -55, 1, 0, 0, 0, 0, 64, -144, 1, 0, 0, 0, 0, 0, 168, -377, 1, 0, 0, 0, 0, 0, 0, 441, -987, 1, 0, 0, 0, 0, 0, 0, 0, 1155, -2584, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3025, -6765, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7920, -17711, 1
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Examples

			Rows begin
1;
-1,1;
1,-3,1;
0,3,-8,1;
0,0,9,-21,1;
0,0,0,24,-55,1;
0,0,0,0,64,-144,1;
0,0,0,0,0,168,-377,1;
		

Formula

Form the n X n Hankel matrices F(i+j-1), 1<=i, j<=n for the Fibonacci numbers and take the characteristic polynomials of these matrices. Triangle rows give coefficients of these characteristic polynomials. (Construction described by Michael Somos in A064831). Diagonal is (-1)^n*F(2n+2). Subdiagonal is A064831. Row sums are A110034. The unsigned matrix has row sums A110035.
Previous Showing 21-30 of 36 results. Next