A180666
Golden Triangle sums: a(n)=a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
Original entry on oeis.org
0, 1, 2, 6, 15, 41, 106, 279, 729, 1911, 5001, 13095, 34281, 89752, 234971, 615165, 1610520, 4216400, 11038675, 28899630, 75660210, 198081006, 518582802, 1357667406, 3554419410, 9305590831, 24362353076, 63781468404
Offset: 0
-
nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: a(2):=2: a(3):=6: for n from 4 to nmax do a(n):=a(n-4)+A001654(n) od: seq(a(n),n=0..nmax);
A180666 := proc(n)
option remember;
if n <=3 then
op(n+1,[0,1,2,6]) ;
else
procname(n-4)+A001654(n) ;
end if;
end proc:
seq(A180666(n),n=0..100 ) ; # R. J. Mathar, Aug 18 2016
-
Take[Total@{#, PadLeft[Drop[#, -4], Length@ #]}, Length@ # - 4] &@ Table[Times @@ Fibonacci@ {n, n + 1}, {n, 0, 31}] (* or *)
CoefficientList[Series[(-x)/((x^2 - 3 x + 1) (x - 1) (x + 1)^2 (x^2 + 1)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 18 2016 *)
A202503
Fibonacci self-fission matrix, by antidiagonals.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1
Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
-
n = 14;
Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
P = P1[[Range[2, n], Range[1, n]]];
F = P.Q;
Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
TableForm[P] (* A202502, modified lower triangular Fibonacci array *)
TableForm[Q] (* A202451, upper tri. Fibonacci array *)
TableForm[F] (* A202503, Fibonacci fission array *)
A096979
Sum of the areas of the first n+1 Pell triangles.
Original entry on oeis.org
0, 1, 6, 36, 210, 1225, 7140, 41616, 242556, 1413721, 8239770, 48024900, 279909630, 1631432881, 9508687656, 55420693056, 323015470680, 1882672131025, 10973017315470, 63955431761796, 372759573255306, 2172602007770041
Offset: 0
- S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
- Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
- Index entries for linear recurrences with constant coefficients, signature (6,0,-6,1).
-
Accumulate[LinearRecurrence[{5,5,-1},{0,1,5},30]] (* Harvey P. Dale, Sep 07 2011 *)
LinearRecurrence[{6, 0, -6, 1},{0, 1, 6, 36},22] (* Ray Chandler, Aug 03 2015 *)
A282464
a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.
Original entry on oeis.org
0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
Offset: 0
Cf.
A014286: partial sums of i*Fibonacci(i).
Cf.
A064831: partial sums of (n+1-i)*Fibonacci(i)^2.
-
[&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
-
with(combinat): P:=proc(q) local a,n; a:=0; print(a); for n from 1 to q do
a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
-
a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
LinearRecurrence[{5,-4,-10,10,4,-5,1},{0,1,3,15,51,176,560},30] (* Harvey P. Dale, May 15 2021 *)
-
makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30);
-
a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
-
[sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
A080145
a(n) = Sum_{m=1..n} Sum_{i=1..m} F(i)*F(i+1) where F(n)=Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 4, 13, 37, 101, 269, 710, 1865, 4890, 12810, 33546, 87834, 229963, 602062, 1576231, 4126639, 10803695, 28284455, 74049680, 193864595, 507544116, 1328767764, 3478759188, 9107509812, 23843770261, 62423800984, 163427632705
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- Justin M. Troyka and Yan Zhuang, Fibonacci numbers, consecutive patterns, and inverse peaks, arXiv:2109.14774 [math.CO], 2021.
- Yan Zhuang, A lifting of the Goulden-Jackson cluster method to the Malvenuto-Reutenauer algebra, arXiv:2108.10309 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-3,4,-1).
-
F:=Fibonacci;; List([0..30], n-> (4*F(n+1)*F(n+2)-2*n-3-(-1)^n)/4); # G. C. Greubel, Jul 23 2019
-
[(4*Lucas(2*n+3)+(-1)^(n+1)-10*n-15)/20: n in [0..30]]; // Vincenzo Librandi, Aug 22 2017
-
CoefficientList[Series[x/((1-2x-2x^2+x^3)(1-x)^2), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
With[{F=Fibonacci}, Table[(4*F[n+1]*F[n+2]-2*n-3-(-1)^n)/4, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
-
L(n)=fibonacci(n-1)+fibonacci(n+1)
a(n)=(4*L(2*n+3)-(-1)^n-10*n-15)/20 \\ Charles R Greathouse IV, Aug 26 2017
-
f=fibonacci; [(4*f(n+1)*f(n+2)-2*n-3-(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Jul 23 2019
A193917
Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 3, 6, 9, 3, 5, 9, 15, 24, 5, 8, 15, 24, 40, 64, 8, 13, 24, 39, 64, 104, 168, 13, 21, 39, 63, 104, 168, 273, 441, 21, 34, 63, 102, 168, 272, 441, 714, 1155, 34, 55, 102, 165, 272, 440, 714, 1155, 1870, 3025, 55, 89, 165, 267, 440, 712, 1155
Offset: 0
First six rows:
1
1...1
1...2...3
2...3...6....9
3...5...9....15...24
5...8...15...24...40...64
-
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := p[n, x];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193917 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193918 *)
A194000
Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0
First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
-
z = 11;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := p[n, x];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194000 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A194001 *)
A230447
T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0
The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 2, 2, 2
3| 2, 4, 5, 3
4| 3, 6, 9, 8, 6
5| 3, 9, 16, 17, 14, 9
6| 4, 12, 25, 33, 32, 23, 15
7| 4, 16, 38, 58, 65, 55, 39, 24
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 2, 3, 6, 9, 15, 24
1| 1, 2, 5, 8, 14, 23, 39, 63
2| 2, 4, 9, 17, 32, 55, 94, 157
3| 2, 6, 16, 33, 65, 120, 215, 372
4| 3, 9, 25, 58, 124, 244, 459, 831
5| 3, 12, 38, 96, 220, 464, 924, 1755
6| 4, 16, 54, 150, 371, 835, 1759, 3514
7| 4, 20, 75, 225, 596, 1431, 3191, 6705
-
T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A096978
Sum of the areas of the first n Jacobsthal rectangles.
Original entry on oeis.org
0, 1, 4, 19, 74, 305, 1208, 4863, 19398, 77709, 310612, 1242907, 4970722, 19884713, 79535216, 318148151, 1272578046, 5090341317, 20361307020, 81445344595, 325781145370, 1303125047521, 5212499258024, 20849998896239, 83399991856694
Offset: 0
-
[8*4^n/27-2*(-2)^n/27-(n+2)/9: n in [0..30]]; // Vincenzo Librandi, May 31 2011
-
LinearRecurrence[{4,3,-14,8},{0,1,4,19},30] (* or *) Table[(2^(2n+1)-3n - 3+(-2)^n)/27,{n,30}] (* Harvey P. Dale, Aug 08 2011 *)
A110033
A characteristic triangle for the Fibonacci numbers.
Original entry on oeis.org
1, -1, 1, 1, -3, 1, 0, 3, -8, 1, 0, 0, 9, -21, 1, 0, 0, 0, 24, -55, 1, 0, 0, 0, 0, 64, -144, 1, 0, 0, 0, 0, 0, 168, -377, 1, 0, 0, 0, 0, 0, 0, 441, -987, 1, 0, 0, 0, 0, 0, 0, 0, 1155, -2584, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3025, -6765, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7920, -17711, 1
Offset: 0
Rows begin
1;
-1,1;
1,-3,1;
0,3,-8,1;
0,0,9,-21,1;
0,0,0,24,-55,1;
0,0,0,0,64,-144,1;
0,0,0,0,0,168,-377,1;
Comments