cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A349795 Number of non-strict integer partitions of n that are constant or whose part multiplicities, except possibly the first and last, are all even.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 39, 46, 61, 69, 90, 103, 131, 147, 185, 207, 259, 286, 355, 391, 482, 528, 644, 706, 858, 933, 1129, 1228, 1477, 1597, 1916, 2072, 2473, 2668, 3168, 3415, 4047, 4347, 5133, 5514, 6488, 6952, 8162, 8738, 10226, 10936
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed. Equivalently, these are partitions that are weakly alternating but not strongly alternating.

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)      (44)
               (211)   (311)    (222)     (331)      (332)
               (1111)  (2111)   (411)     (511)      (422)
                       (11111)  (2211)    (2221)     (611)
                                (3111)    (4111)     (2222)
                                (21111)   (22111)    (3221)
                                (111111)  (31111)    (3311)
                                          (211111)   (5111)
                                          (1111111)  (22211)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

This is the restriction of A349060 to non-strict partitions.
The complement in non-strict partitions is A349796.
Permutations of prime factors of this type are counted by A349798.
The ordered version (compositions) is A349800, ranked by A349799.
These partitions are ranked by A350137.
A000041 counts integer partitions, non-strict A047967.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, also A025048 and A025049.
A096441 counts weakly alternating 0-appended partitions.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349053 counts non-weakly alternating compositions, complement A349052.
A349061 counts non-weakly alternating partitions, ranked by A349794.
A349801 counts non-alternating partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#&&(SameQ@@#||And@@EvenQ/@Take[Length/@Split[#],{2,-2}])&]],{n,0,30}]

Formula

a(n > 0) = A349060(n) - A065033(n) = A349060(n) - floor(n/2).
a(n) = A047967(n) - A349796(n).

A098641 Number of partitions of the n-th Fibonacci number into Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 14, 41, 157, 803, 5564, 53384, 718844, 13783708, 380676448, 15298907733, 902438020514, 78720750045598, 10220860796171917, 1986422867300209784, 580763241873718042562, 256553744608217295298827, 171912553856721407543178940, 175350753369071026461010505478
Offset: 0

Views

Author

Marcel Dubois de Cadouin (dubois.ml(AT)club-internet.fr), Oct 27 2004

Keywords

Comments

a(n) = A003107(A000045(n)).

Examples

			n=6: A000045(6)=8, a(6) = #{8, 5+3, 5+2+1, 5+1+1+1, 3+3+2, 3+3+1+1, 3+2+2+1, 3+2+1+1+1, 3+1+1+1+1+1, 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1} = 14; the other partitions of 8 into parts with at least one non-Fibonacci number: 7+1, 6+2, 6+1+1, 4+4, 4+3+1, 4+2+2, 4+2+1+1 and 4+1+1+1+1.
		

Crossrefs

Programs

  • Mathematica
    cl = CoefficientList[ Series[1/Product[(1 - x^Fibonacci[i]), {i, 2, 21}], {x, 0, 10950}], x]; cl[[ Table[ Fibonacci[i] + 1, {i, 21}] ]] (* Robert G. Wilson v, Apr 25 2005 *)

Formula

a(n) = A098642(n) + A098643(n) + A098644(n).

Extensions

Corrected and extended by Reinhard Zumkeller, Apr 24 2005
a(15)-a(21) from Robert G. Wilson v, Apr 25 2005
Entry revised by N. J. A. Sloane, Mar 29 2006
a(0), a(22)-a(23) from Alois P. Heinz, Sep 20 2018

A349801 Number of integer partitions of n into three or more parts or into two equal parts.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 11, 18, 25, 37, 50, 71, 94, 128, 168, 223, 288, 376, 480, 617, 781, 991, 1243, 1563, 1945, 2423, 2996, 3704, 4550, 5589, 6826, 8333, 10126, 12293, 14865, 17959, 21618, 25996, 31165, 37318, 44562, 53153, 63239, 75153, 89111, 105535, 124730
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

This sequence arose as the following degenerate case. If we define a sequence to be alternating if it is alternately strictly increasing and strictly decreasing, starting with either, then a(n) is the number of non-alternating integer partitions of n. Under this interpretation:
- The non-strict case is A047967, weak A349796, weak complement A349795.
- The complement is counted by A065033(n) = ceiling(n/2) for n > 0.
- These partitions are ranked by A289553 \ {1}, complement A167171 \/ {1}.
- The version for compositions is A345192, ranked by A345168.
- The weak version for compositions is A349053, ranked by A349057.
- The weak version is A349061, complement A349060, ranked by A349794.

Examples

			The a(2) = 1 through a(7) = 11 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)
               (211)   (311)    (222)     (331)
               (1111)  (2111)   (321)     (421)
                       (11111)  (411)     (511)
                                (2211)    (2221)
                                (3111)    (3211)
                                (21111)   (4111)
                                (111111)  (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
		

Crossrefs

A000041 counts partitions, ordered A011782.
A001250 counts alternating permutations, complement A348615.
A004250 counts partitions into three or more parts, strict A347548.
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A096441 counts weakly alternating 0-appended partitions.
A345165 counts partitions w/ no alternating permutation, complement A345170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{,,__}]&]],{n,0,10}]

Formula

a(1) = 0; a(n > 0) = A000041(n) - ceiling(n/2).

A254338 Initial digits of A254143 in decimal representation.

Original entry on oeis.org

1, 4, 7, 1, 2, 3, 3, 4, 6, 1, 1, 2, 2, 2, 3, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2015

Keywords

Comments

a(n) = A000030(A254143(n));
also initial digits of A254323: a(n) = A000030(A254323(n)).
all terms are of the form u*v mod 10, where u <= v and belonging to {1,3,4,6,7}, the distinct elements of A254397:
length of k-th run of consecutive 1s = A005993(k-2), k > 1;
length of k-th run of consecutive 2s = k*(k+1)/2 = A000217(k), k >= 1;
length of k-th run of consecutive 3s = k+1, k >= 1;
length of k-th run of consecutive 4s = A065033(k-1);
n with a(n) = 4: A237424(n) = (10^a+10^b+1)/3 with b = 0, see also A093137, A133384;
n with a(n) = 6: A237424(n) = (10^a+10^b+1)/3 with a = b; A005994(a(n)) = 6 for n > 1; see also A199682;

Crossrefs

Programs

  • Haskell
    a254338 = a000030 . a254143
    
  • PARI
    listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
    do(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); apply(n->digits(n)[1], Set(v)) \\ Charles R Greathouse IV, May 13 2015

A347586 Number of partitions of n into at most 4 distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 26, 31, 36, 43, 49, 57, 65, 75, 84, 96, 107, 121, 134, 150, 165, 184, 201, 222, 242, 266, 288, 315, 340, 370, 398, 431, 462, 499, 533, 573, 611, 655, 696, 744, 789, 841, 890, 946, 999, 1060, 1117, 1182, 1244, 1314, 1380, 1455
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 0, 4}], {x, 0, nmax}], x]
    Join[{1}, LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 8, 10}, 60]]

Formula

G.f.: Sum_{k=0..4} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).
a(n) ~ A000578(n)/144. - Stefano Spezia, Sep 08 2021

A123108 a(n) = a(n-1) + a(n-2) - a(n-3), for n > 3, with a(0)=1, a(1)=0, a(2)=1, a(3)=1.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
Offset: 0

Views

Author

Philippe Deléham, Sep 28 2006

Keywords

Comments

Diagonal sums of triangle A123110. - Philippe Deléham, Oct 08 2009

Crossrefs

Programs

  • Magma
    I:=[0,1,1]; [1] cat [n le 3 select I[n] else Self(n-1) +Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, Jul 21 2021
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,0,1,1},90] (* Harvey P. Dale, Aug 10 2020 *)
  • Sage
    [(2*n - 1 + (-1)^n)/4 + bool(n==0) for n in (0..90)] # G. C. Greubel, Jul 21 2021

Formula

G.f.: (1 -x +x^3)/(1 -x -x^2 +x^3).
a(n) = A110654(n-1). - R. J. Mathar, Jun 18 2008
From G. C. Greubel, Jul 21 2021: (Start)
a(n) = (1/4)*(2*n - 1 + (-1)^n) + [n=0].
E.g.f.: (1/2)*(2 + x*cosh(x) + (x-1)*sinh(x)). (End)

A342343 Number of strict compositions of n with alternating parts strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 13, 18, 27, 32, 44, 55, 73, 97, 121, 151, 194, 240, 299, 384, 465, 576, 706, 869, 1051, 1293, 1572, 1896, 2290, 2761, 3302, 3973, 4732, 5645, 6759, 7995, 9477, 11218, 13258, 15597, 18393, 21565, 25319, 29703, 34701, 40478, 47278, 54985
Offset: 0

Views

Author

Gus Wiseman, Apr 01 2021

Keywords

Comments

These are finite odd-length sequences q of distinct positive integers summing to n such that q(i) > q(i+2) for all possible i.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)    (2,6)
                          (3,2)  (4,2)    (3,4)    (3,5)
                          (4,1)  (5,1)    (4,3)    (5,3)
                                 (2,3,1)  (5,2)    (6,2)
                                 (3,1,2)  (6,1)    (7,1)
                                 (3,2,1)  (2,4,1)  (2,5,1)
                                          (4,1,2)  (3,4,1)
                                          (4,2,1)  (4,1,3)
                                                   (4,3,1)
                                                   (5,1,2)
                                                   (5,2,1)
		

Crossrefs

The non-strict case is A000041 (see A342528 for a bijective proof).
The non-strict odd-length case is A001522.
Strict compositions in general are counted by A032020
The non-strict even-length case is A064428.
The case of reversed partitions is A065033.
A000726 counts partitions with alternating parts unequal.
A003242 counts anti-run compositions.
A027193 counts odd-length compositions.
A034008 counts even-length compositions.
A064391 counts partitions by crank.
A064410 counts partitions of crank 0.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.
A325548 counts compositions with strictly decreasing differences.
A342194 counts strict compositions with equal differences.
A342527 counts compositions with alternating parts equal.

Programs

  • Mathematica
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],ici]],{n,0,15}]
  • PARI
    seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, binomial(k, k\2) * polcoef(p,k,y)))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} binomial(k,floor(k/2)) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021

A275416 Triangle read by rows: T(n,k) is the number of multisets of k odd numbers with a cap of the total sum set to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 3, 1, 1, 3, 8, 5, 3, 1, 1, 4, 10, 10, 5, 3, 1, 1, 4, 16, 15, 11, 5, 3, 1, 1, 5, 20, 27, 17, 11, 5, 3, 1, 1, 5, 29, 38, 32, 18, 11, 5, 3, 1, 1, 6, 35, 60, 49, 34, 18, 11, 5, 3, 1, 1, 6, 47, 84, 83, 54, 35, 18, 11, 5, 3, 1, 1, 7, 56, 122, 123
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

By considering the partitions of n into k parts we set a cap on the odd numbers of each part and count the multisets (ordered k-tuples) of odd numbers where each number is not larger than the cap of its part.
Multiset transformation of A110654 or A065033.

Examples

			T(6,2) = 3+2+3 = 8 counts {1,1} {1,3}, and {3,3} from taking two odd numbers <= 3; it counts {1,1} and {1,3} from taking an odd number <= 2 and an odd number <= 4; and it counts {1,1}, {1,3} and {1,5} from taking an odd number <= 1 and an odd number <= 5.
T(6,3) = 1+2+2 = 5 counts {1,1,1} from taking three odd numbers <= 2; it counts {1,1,1} and {1,1,3} from taking an odd number <= 1 and an odd number <= 2 and an odd number <= 3; and it counts {1,1,1} and {1,1,3} from taking two odd numbers <= 1 and an odd number <= 4.
  1
  1   1
  2   1   1
  2   3   1   1
  3   4   3   1   1
  3   8   5   3   1   1
  4  10  10   5   3   1   1
  4  16  15  11   5   3   1   1
  5  20  27  17  11   5   3   1   1
  5  29  38  32  18  11   5   3   1   1
  6  35  60  49  34  18  11   5   3   1   1
  6  47  84  83  54  35  18  11   5   3   1   1
  7  56 122 123  94  56  35  18  11   5   3   1   1
  7  72 164 192 146  99  57  35  18  11   5   3   1   1
		

Crossrefs

Cf. A110654 (column 1), A003293 (row sums?), A089353 (equivalent Multiset transformation of A000027), A005232 (2nd column?), A097513 (3rd column?).
T(2n,n) gives A269628.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(ceil(i/2)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..16);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[Ceiling[i/2] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)

Formula

T(n,1) = A110654(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1 < k <= n.
G.f.: Product_{j>=1} (1-y*x^j)^(-ceiling(j/2)). - Alois P. Heinz, Apr 13 2017

A347587 Number of partitions of n into at most 5 distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 75, 88, 102, 119, 137, 158, 181, 207, 235, 268, 302, 341, 383, 430, 480, 536, 595, 661, 731, 808, 889, 979, 1073, 1176, 1285, 1403, 1527, 1662, 1803, 1956, 2116, 2288, 2468, 2662, 2864, 3080, 3306, 3547
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 58; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 0, 5}], {x, 0, nmax}], x]
    LinearRecurrence[{1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1}, {1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22}, 59]

Formula

G.f.: Sum_{k=0..5} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).

A347588 Number of partitions of n into at most 6 distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 221, 255, 294, 337, 385, 441, 501, 570, 646, 731, 824, 930, 1043, 1171, 1310, 1464, 1630, 1817, 2015, 2236, 2473, 2734, 3013, 3322, 3648, 4008, 4391, 4809, 5252, 5738, 6249
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 58; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 0, 6}], {x, 0, nmax}], x]
    Join[{1}, LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76}, 58]]

Formula

G.f.: Sum_{k=0..6} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).
Previous Showing 11-20 of 23 results. Next