A076530
Numbers n such that sigma(n) = sigma(n+1) - sigma(n-1).
Original entry on oeis.org
2, 3, 23, 1967, 3263, 5015, 60455, 1016507, 4420163, 12055511, 14365607, 25726727, 27896423, 66562307, 72764735, 98734967, 175186655, 224868311, 253694927, 288657203, 386668343, 421575407, 504737747, 630645455, 1493547999
Offset: 1
sigma(24) = 60. sigma(23) = 24. sigma(22) = 36 and 24 = 60 - 36; hence 23 is a term of the sequence.
-
Select[Range[2, 10^5], DivisorSigma[1, # ] == DivisorSigma[1, # + 1] - DivisorSigma[1, # - 1] &]
Flatten[Position[Partition[DivisorSigma[1,Range[1493548000]],3,1],?(#[[2]] == #[[3]]-#[[1]]&),1,Heads->False]]+1 (* _Harvey P. Dale, Apr 13 2020 *)
A291126
Psibonacci numbers: solutions n of the equation psi(n) = psi(n-1) + psi(n-2), where psi is the Dedekind psi function (A001615).
Original entry on oeis.org
3, 6, 210, 88200, 101970, 193290, 289680, 993990, 11264550, 59068230, 72776970, 98746230, 122460690, 126500910, 132766770, 234150930, 514442214, 531391650, 638082390, 650428020, 790769790, 1249160790, 3727074450, 4775972850, 8299675650, 9530202210
Offset: 1
psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
-
psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]];
Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]
A291176
Numbers k such that s(k) = s(k-1) + s(k-2), where s(k) is the sum of proper divisors of k (A001065).
Original entry on oeis.org
3, 8, 20, 146139, 584835, 44814015, 1436395095, 9988999095, 25997557299, 193861767939, 2105722150095, 3921293253003, 8234992646643
Offset: 1
s(146139) = 76581 = 75802 + 779 = s(146138) + s(146137), therefore 146139 is in the sequence.
A104149
Numbers k such that sigma(k+2) = sigma(k+1) + sigma(k).
Original entry on oeis.org
1, 2, 22, 1966, 3262, 5014, 60454, 1016506, 4420162, 12055510, 14365606, 25726726, 27896422, 66562306, 72764734, 98734966, 175186654, 224868310, 253694926, 288657202, 386668342, 421575406, 504737746, 630645454, 1493547998, 1653797794, 2120325010, 2221315150
Offset: 1
Neven Juric (neven.juric(AT)apis-it.hr), Aug 16 2010
sigma(22) = 1+2+11+22 = 36.
sigma(23) = 1+23 = 24.
sigma(24) = 1+2+3+4+6+8+12+24 = 60.
sigma(24) = sigma(23) + sigma(22).
-
[n: n in [1..2*10^6] | SumOfDivisors(n+2) eq (SumOfDivisors(n+1)+SumOfDivisors(n))]; // Vincenzo Librandi, Mar 24 2015
-
Select[Range@ 100000, DivisorSigma[1, # + 2] == DivisorSigma[1, # + 1] + DivisorSigma[1, #] &] (* Michael De Vlieger, Mar 23 2015 *)
Position[Partition[DivisorSigma[1,Range[3*10^7]],3,1],?(#[[1]]+#[[2]]==#[[3]]&),1,Heads->False]//Flatten (* The program generates the first 13 terms *) (* _Harvey P. Dale, May 08 2018 *)
-
s1=1; s2=3; for(n=1, 10^8, s3=sigma(n+2); if(s3==s1+s2, print1(n ", ")); s1=s2; s2=s3) /* Donovan Johnson, Apr 08 2013 */
A226361
Numbers n such that sigma(n) = sigma(n+1) + sigma(n+2).
Original entry on oeis.org
378624, 661152, 5479092, 5526024, 7179624, 18744216, 122321970, 168201288, 215676636, 778701984, 1482154170, 1788138780, 1974360132, 2288979096, 3361923780, 4214315484, 4757106144, 4971510492, 6264306144, 6884356716, 10730488296, 11375549304, 16851779736
Offset: 1
-
nn = 10^7; t = {}; sig0 = 1; sig1 = 3; Do[sig2 = DivisorSigma[1, n + 2]; If[sig0 == sig1 + sig2, AppendTo[t, n]]; sig0 = sig1; sig1 = sig2, {n, nn}]; t (* T. D. Noe, Jun 05 2013 *)
A226475
Numbers n such that sigma(n) + sigma(n+1) = sigma(n+2) + sigma(n+3).
Original entry on oeis.org
75, 113, 295, 533, 686, 2130, 14805, 26966, 30235, 35095, 135653, 355675, 432996, 590138, 1214588, 2692853, 2952064, 3375195, 3486795, 5973014, 6880351, 7334956, 22266602, 25841659, 30483834, 37416582, 38390010, 40952513, 41109593, 57242145
Offset: 1
sigma(75) + sigma(76) = 124 + 140 = 264, and sigma(77) + sigma(78) = 96 + 168 = 264, so 75 is in the sequence.
-
t = {}; s = DivisorSigma[1, Range[0, 3]]; n = 3; While[Length[t] < 10, n++; s = RotateLeft[s]; s[[4]] = DivisorSigma[1, n]; If[s[[1]] + s[[2]] == s[[3]] + s[[4]], AppendTo[t, n - 3]]]; t (* T. D. Noe, Jun 12 2013 *)
Module[{ds=DivisorSigma[1,Range[6*10^7]]},Flatten[Position[Partition[ds,4,1],?(Total[Take[#,2]]==Total[Take[#,-2]]&),{1},Heads->False]]] (* _Harvey P. Dale, Sep 13 2014 *)
A332973
Solutions k of the equation usigma(k) = usigma(k-1) + usigma(k-2) where usigma(k) is the sum of unitary divisors of k (A034448).
Original entry on oeis.org
3, 42, 188970, 998670, 51670374, 91397154, 236280786, 259172826, 792554574, 1106710914, 1468869930, 1957827498, 2467823442, 2496238590, 3324585210, 4055970282, 4183629690, 4384566870, 13479861630, 20681058270, 29343074178, 43449285210, 68705958690, 71418085926
Offset: 1
42 is a term since s(42) = 96 and s(40) + s(41) = 54 + 42 = 96.
-
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3, 10^8], usigma[#] == usigma[# - 1] + usigma[# - 2] &]
-
usigma(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)); \\ A034448
isok(k) = usigma(k) == usigma(k-1) + usigma(k-2); \\ Jinyuan Wang, Mar 08 2020
A332975
Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).
Original entry on oeis.org
3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
Offset: 1
24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
Cf.
A049417,
A065557,
A075565,
A076136,
A076251,
A145469,
A291126,
A291176,
A292033,
A294995,
A332976.
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]
A348335
a(n) = smallest k such that the sum of the divisors of the n numbers from k to k+n-1 equals sigma(k+n), or -1 if no such k exists.
Original entry on oeis.org
a(1) = 14 because sigma(14) = sigma(15) = 24; a(1) = A002961(1).
a(2) = 1 because sigma(1) + sigma(2) = 1 + 3 = 4, the same as sigma(3) = 4; a(2) = A104149(1).
a(3) = 591357 because sigma(591357) + sigma(591358) + sigma(591359) = 866880 + 890352 + 599760 = 2356992, the same as sigma(591360) = 2356992.
-
a[n_] := Module[{sig = DivisorSigma[1, Range[n]], k = n + 1}, While[(s = DivisorSigma[1, k]) != Plus @@ sig, sig = Join[Drop[sig, 1], {s}]; k++]; k - n]; Array[a, 3] (* Amiram Eldar, Oct 29 2021 *)
-
isok(m, nb) = sum(i=1, nb, sigma(m+i-1)) == sigma(m+nb);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 28 2021
A076666
Numbers n such that sigma(n) + sigma(n+3) = sigma(n+1) + sigma(n+2).
Original entry on oeis.org
2012, 2096, 15892, 17888, 39916, 102784, 141008, 146227, 482144, 487865, 1321312, 1887008, 2749057, 3513881, 7141158, 16767172, 17503912, 28122834, 30534728, 37453779, 42140437, 60994100, 67777337, 78251933, 113091820, 113768920, 129868059, 199240914, 240859196, 302897372
Offset: 1
sigma(2012) + sigma(2015) = 3528 + 2688 = 6216; sigma(2013) + sigma(2014) = 2976 + 3240 = 6216, so 2012 is a term of the sequence.
-
Select[Range[10^5], DivisorSigma[1, # ] + DivisorSigma[1, # + 3] == DivisorSigma[1, # + 1] + DivisorSigma[1, # + 2] &]
Showing 1-10 of 16 results.
Comments