A351302
a(n) = n^7 * Product_{p|n, p prime} (1 + 1/p^7).
Original entry on oeis.org
1, 129, 2188, 16512, 78126, 282252, 823544, 2113536, 4785156, 10078254, 19487172, 36128256, 62748518, 106237176, 170939688, 270532608, 410338674, 617285124, 893871740, 1290016512, 1801914272, 2513845188, 3404825448, 4624416768, 6103593750, 8094558822, 10465136172
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6), this sequence (k=7),
A351303 (k=8),
A351304 (k=9),
A351305 (k=10).
-
f[p_, e_] := p^(7*e) + p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^7);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^7*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
A351303
a(n) = n^8 * Product_{p|n, p prime} (1 + 1/p^8).
Original entry on oeis.org
1, 257, 6562, 65792, 390626, 1686434, 5764802, 16842752, 43053282, 100390882, 214358882, 431727104, 815730722, 1481554114, 2563287812, 4311744512, 6975757442, 11064693474, 16983563042, 25700065792, 37828630724, 55090232674, 78310985282, 110522138624, 152588281250
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6),
A351302 (k=7), this sequence (k=8),
A351304 (k=9),
A351305 (k=10).
-
f[p_, e_] := p^(8*e) + p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^8);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^8*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
A351304
a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).
Original entry on oeis.org
1, 513, 19684, 262656, 1953126, 10097892, 40353608, 134479872, 387440172, 1001953638, 2357947692, 5170120704, 10604499374, 20701400904, 38445332184, 68853694464, 118587876498, 198756808236, 322687697780, 513000262656, 794320419872, 1209627165996, 1801152661464, 2647101800448
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6),
A351302 (k=7),
A351303 (k=8), this sequence (k=9),
A351305 (k=10).
-
f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
-
from math import prod
from sympy import factorint
def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 28 2024
A351305
a(n) = n^10 * Product_{p|n, p prime} (1 + 1/p^10).
Original entry on oeis.org
1, 1025, 59050, 1049600, 9765626, 60526250, 282475250, 1074790400, 3486843450, 10009766650, 25937424602, 61978880000, 137858491850, 289537131250, 576660215300, 1100585369600, 2015993900450, 3574014536250, 6131066257802, 10250001049600, 16680163512500, 26585860217050
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6),
A351302 (k=7),
A351303 (k=8),
A351304 (k=9), this sequence (k=10).
-
f[p_, e_] := p^(10*e) + p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^10);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^10*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
A078615
a(n) = rad(n)^2, where rad is the squarefree kernel of n (A007947).
Original entry on oeis.org
1, 4, 9, 4, 25, 36, 49, 4, 9, 100, 121, 36, 169, 196, 225, 4, 289, 36, 361, 100, 441, 484, 529, 36, 25, 676, 9, 196, 841, 900, 961, 4, 1089, 1156, 1225, 36, 1369, 1444, 1521, 100, 1681, 1764, 1849, 484, 225, 2116, 2209, 36, 49, 100, 2601, 676, 2809, 36, 3025, 196
Offset: 1
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Peter Bala, GCD sum theorems. Two Multivariable Cesaro Type Identities.
- K. Broughan, J.-M. De Koninck, I. Kátai, and F. Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq., 15 (2012), pp. 1-12.
- Yong-Gao Chen, and Xin Tong, On a conjecture of de Koninck, Journal of Number Theory, Volume 154, September 2015, Pages 324-364. Beware of typo 1728.
-
a := n -> mul(f,f=map(x->x^2,select(isprime,divisors(n))));
seq(a(n), n=1..56); # Peter Luschny, Mar 30 2014
-
a[n_] := Times @@ FactorInteger[n][[All, 1]]^2; Array[a, 60] (* Jean-François Alcover, Jun 04 2019 *)
-
a(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])^2 \\ Charles R Greathouse IV, Aug 06 2013
A328639
Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-2)).
Original entry on oeis.org
1, -5, -10, 5, -26, 50, -50, -5, 10, 130, -122, -50, -170, 250, 260, 5, -290, -50, -362, -130, 500, 610, -530, 50, 26, 850, -10, -250, -842, -1300, -962, -5, 1220, 1450, 1300, 50, -1370, 1810, 1700, 130, -1682, -2500, -1850, -610, -260, 2650, -2210, -50, 50, -130
Offset: 1
-
a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^2, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 50}]
Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^2 &], {n, 1, 50}]
f[p_, e_] := (-1)^e*(p^2 + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
-
a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019
A320974
a(n) = n^n * Product_{p|n, p prime} (1 + 1/p^n).
Original entry on oeis.org
1, 5, 28, 272, 3126, 47450, 823544, 16842752, 387440172, 10009766650, 285311670612, 8918294011904, 302875106592254, 11112685048647250, 437893920912786408, 18447025548686262272, 827240261886336764178, 39346558271492178663450, 1978419655660313589123980
Offset: 1
-
Table[n^n Product[1 + Boole[PrimeQ[d]]/d^n, {d, Divisors[n]}], {n, 19}]
Table[SeriesCoefficient[Sum[MoebiusMu[k]^2 PolyLog[-n, x^k], {k, 1, n}], {x, 0, n}], {n, 19}]
Table[Sum[MoebiusMu[n/d]^2 d^n, {d, Divisors[n]}], {n, 19}]
A381713
a(n) = J_9(n)/J_3(n), where J_k is the k-th Jordan totient function.
Original entry on oeis.org
1, 73, 757, 4672, 15751, 55261, 117993, 299008, 551853, 1149823, 1772893, 3536704, 4829007, 8613489, 11923507, 19136512, 24142483, 40285269, 47052741, 73588672, 89320701, 129421189, 148048057, 226349056, 246109375, 352517511, 402300837, 551263296
Offset: 1
-
f[p_, e_] := p^(6*e) * (1 + 1/p^3 + 1/p^6); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 28] (* Amiram Eldar, Mar 05 2025 *)
-
J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
a(n) = J(n, 9)/J(n, 3);
-
a(n) = {my(p = factor(n)[, 1]); n^6 * prod(i = 1, #p, 1 + 1/p[i]^3 + 1/p[i]^6);} \\ Amiram Eldar, Mar 05 2025
A320973
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = n^k * Product_{p|n, p prime} (1 + 1/p^k).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 9, 10, 6, 2, 1, 17, 28, 20, 6, 4, 1, 33, 82, 72, 26, 12, 2, 1, 65, 244, 272, 126, 50, 8, 2, 1, 129, 730, 1056, 626, 252, 50, 12, 2, 1, 257, 2188, 4160, 3126, 1394, 344, 80, 12, 4, 1, 513, 6562, 16512, 15626, 8052, 2402, 576, 90, 18, 2
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
2, 4, 10, 28, 82, 244, ...
2, 6, 20, 72, 272, 1056, ...
2, 6, 26, 126, 626, 3126, ...
4, 12, 50, 252, 1394, 8052, ...
-
Table[Function[k, n^k Product[1 + Boole[PrimeQ[d]]/d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j]^2 PolyLog[-k, x^j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, Sum[MoebiusMu[n/d]^2 d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
A321973
Partial sums of the Dedekind psi_2(k) function, for 1 <= k <= n.
Original entry on oeis.org
0, 1, 6, 16, 36, 62, 112, 162, 242, 332, 462, 584, 784, 954, 1204, 1464, 1784, 2074, 2524, 2886, 3406, 3906, 4516, 5046, 5846, 6496, 7346, 8156, 9156, 9998, 11298, 12260, 13540, 14760, 16210, 17510, 19310, 20680, 22490, 24190, 26270, 27952, 30452, 32302, 34742
Offset: 0
-
a[n_] := Sum[MoebiusMu[k]^2 * BernoulliB[3, 1 + Floor[n/k]], {k, 1, n}]/3; Array[a, 50, 0] (* Amiram Eldar, Nov 23 2018 *)
-
a(n) = sum(k=1, n, moebius(k)^2 * ((n\k)^3/3 + (n\k)^2/2 + (n\k)/6));
Comments