cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A351302 a(n) = n^7 * Product_{p|n, p prime} (1 + 1/p^7).

Original entry on oeis.org

1, 129, 2188, 16512, 78126, 282252, 823544, 2113536, 4785156, 10078254, 19487172, 36128256, 62748518, 106237176, 170939688, 270532608, 410338674, 617285124, 893871740, 1290016512, 1801914272, 2513845188, 3404825448, 4624416768, 6103593750, 8094558822, 10465136172
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 7th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu), A069092.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), this sequence (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(7*e) + p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^7);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^7*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^7 * mu(n/d)^2.
a(n) = n^7 * Sum_{d|n} mu(d)^2 / d^7.
Multiplicative with a(p^e) = p^(7*e) + p^(7*e-7). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^8 * zeta(8) / (8 * zeta(16)) = 34459425 * n^8 / (28936 * Pi^8).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^7/(p^14-1)) = 1.008287998838997802253937842472728682107868602338715231926150271159410... (End)
a(n) = J_14(n) / J_7(n) = J_14(n) / A069092(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Nov 13 2022

A351303 a(n) = n^8 * Product_{p|n, p prime} (1 + 1/p^8).

Original entry on oeis.org

1, 257, 6562, 65792, 390626, 1686434, 5764802, 16842752, 43053282, 100390882, 214358882, 431727104, 815730722, 1481554114, 2563287812, 4311744512, 6975757442, 11064693474, 16983563042, 25700065792, 37828630724, 55090232674, 78310985282, 110522138624, 152588281250
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 8th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), this sequence (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(8*e) + p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^8);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^8*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^8 * mu(n/d)^2.
a(n) = n^8 * Sum_{d|n} mu(d)^2 / d^8.
Multiplicative with a(p^e) = p^(8*e) + p^(8*e-8). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-8)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^9 * zeta(9) / (9 * zeta(18)) = 4331032831125 * n^9 * zeta(9) / (43867 * Pi^18).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^8/(p^16-1)) = 1.004062071480173688638170669970682370243496458304179434830922739661777... (End)
a(n) = J_16(n)/J_8(n) = J_16(n)/A069093(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Nov 14 2022

A351304 a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).

Original entry on oeis.org

1, 513, 19684, 262656, 1953126, 10097892, 40353608, 134479872, 387440172, 1001953638, 2357947692, 5170120704, 10604499374, 20701400904, 38445332184, 68853694464, 118587876498, 198756808236, 322687697780, 513000262656, 794320419872, 1209627165996, 1801152661464, 2647101800448
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 9th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), this sequence (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 28 2024

Formula

a(n) = Sum_{d|n} d^9 * mu(n/d)^2.
a(n) = n^9 * Sum_{d|n} mu(d)^2 / d^9.
Multiplicative with a(p^e) = p^(9*e) + p^(9*e-9). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^10 * zeta(10) / (10 * zeta(20)) = 3273645375 * n^10 / (349222 * Pi^10).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^9/(p^18-1)) = 1.002004575331916689985388864168116922608947780516939765639888137700557... (End)

A351305 a(n) = n^10 * Product_{p|n, p prime} (1 + 1/p^10).

Original entry on oeis.org

1, 1025, 59050, 1049600, 9765626, 60526250, 282475250, 1074790400, 3486843450, 10009766650, 25937424602, 61978880000, 137858491850, 289537131250, 576660215300, 1100585369600, 2015993900450, 3574014536250, 6131066257802, 10250001049600, 16680163512500, 26585860217050
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 10th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(10*e) + p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^10);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^10*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^10 * mu(n/d)^2.
a(n) = n^10 * Sum_{d|n} mu(d)^2 / d^10.
Multiplicative with a(p^e) = p^(10*e) + p^(10*e-10). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-10)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^11 * zeta(11) / (11 * zeta(22)) = 1222532449149375 * n^11 * zeta(11) / (155366 * Pi^22).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^10/(p^20-1)) = 1.000993621149252443797467720671490169127513829380371486971107300011796... (End)

A078615 a(n) = rad(n)^2, where rad is the squarefree kernel of n (A007947).

Original entry on oeis.org

1, 4, 9, 4, 25, 36, 49, 4, 9, 100, 121, 36, 169, 196, 225, 4, 289, 36, 361, 100, 441, 484, 529, 36, 25, 676, 9, 196, 841, 900, 961, 4, 1089, 1156, 1225, 36, 1369, 1444, 1521, 100, 1681, 1764, 1849, 484, 225, 2116, 2209, 36, 49, 100, 2601, 676, 2809, 36, 3025, 196
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2002

Keywords

Comments

It is conjectured that only 1 and 1782 satisfy a(k) = sigma(k). See Broughan link. - Michel Marcus, Feb 28 2019

Crossrefs

Programs

  • Maple
    a := n -> mul(f,f=map(x->x^2,select(isprime,divisors(n))));
    seq(a(n), n=1..56);  # Peter Luschny, Mar 30 2014
  • Mathematica
    a[n_] := Times @@ FactorInteger[n][[All, 1]]^2; Array[a, 60] (* Jean-François Alcover, Jun 04 2019 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])^2 \\ Charles R Greathouse IV, Aug 06 2013

Formula

Multiplicative with a(p^e) = p^2. - Mitch Harris, May 17 2005
G.f.: Sum_{k>=1} mu(k)^2*J_2(k)*x^k/(1 - x^k), where J_2() is the Jordan function. - Ilya Gutkovskiy, Nov 06 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 / 3 = 0.214725... . - Amiram Eldar, Oct 30 2022
a(n) = Sum_{1 <= i, j <= n} ( mobius(n/gcd(i, j, n)) )^2. - Peter Bala, Jan 28 2024
a(n) = Sum_{d|n} mu(d)^2*J_2(d), where J_2 = A007434. - Ridouane Oudra, Jul 24 2025
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*Psi_2(d), where omega = A001221 and Psi_2 = A065958. - Ridouane Oudra, Aug 01 2025

A328639 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -5, -10, 5, -26, 50, -50, -5, 10, 130, -122, -50, -170, 250, 260, 5, -290, -50, -362, -130, 500, 610, -530, 50, 26, 850, -10, -250, -842, -1300, -962, -5, 1220, 1450, 1300, 50, -1370, 1810, 1700, 130, -1682, -2500, -1850, -610, -260, 2650, -2210, -50, 50, -130
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065958.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A046970, A065958, A323363, A328640.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^2, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 50}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^2 &], {n, 1, 50}]
    f[p_, e_] := (-1)^e*(p^2 + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065958(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^2, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^e) = (-1)^e*(p^2 + 1). - Amiram Eldar, Nov 30 2020

A320974 a(n) = n^n * Product_{p|n, p prime} (1 + 1/p^n).

Original entry on oeis.org

1, 5, 28, 272, 3126, 47450, 823544, 16842752, 387440172, 10009766650, 285311670612, 8918294011904, 302875106592254, 11112685048647250, 437893920912786408, 18447025548686262272, 827240261886336764178, 39346558271492178663450, 1978419655660313589123980
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^n Product[1 + Boole[PrimeQ[d]]/d^n, {d, Divisors[n]}], {n, 19}]
    Table[SeriesCoefficient[Sum[MoebiusMu[k]^2 PolyLog[-n, x^k], {k, 1, n}], {x, 0, n}], {n, 19}]
    Table[Sum[MoebiusMu[n/d]^2 d^n, {d, Divisors[n]}], {n, 19}]

Formula

a(n) = [x^n] Sum_{k>=1} mu(k)^2*PolyLog(-n,x^k), where PolyLog() is the polylogarithm function.
a(n) = Sum_{d|n} mu(n/d)^2*d^n.
a(n) = A320973(n,n).

A381713 a(n) = J_9(n)/J_3(n), where J_k is the k-th Jordan totient function.

Original entry on oeis.org

1, 73, 757, 4672, 15751, 55261, 117993, 299008, 551853, 1149823, 1772893, 3536704, 4829007, 8613489, 11923507, 19136512, 24142483, 40285269, 47052741, 73588672, 89320701, 129421189, 148048057, 226349056, 246109375, 352517511, 402300837, 551263296
Offset: 1

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*e) * (1 + 1/p^3 + 1/p^6); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 28] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n) = J(n, 9)/J(n, 3);
    
  • PARI
    a(n) = {my(p = factor(n)[, 1]); n^6 * prod(i = 1, #p, 1 + 1/p[i]^3 + 1/p[i]^6);} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = A069094(n)/A059376(n).
a(n) = n^6 * Product_{distinct primes p dividing n} (1 + 1/p^3 + 1/p^6).
From Amiram Eldar, Mar 05 2025: (Start)
Dirichlet g.f.: zeta(s-6) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{p prime} (1 + 1/p^4 + 1/p^7) = 1.08635980686198102055... .
Sum_{n>=1} 1/a(n) = zeta(6)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^15) = 1.01533121878447451064... . (End)

A320973 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = n^k * Product_{p|n, p prime} (1 + 1/p^k).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 9, 10, 6, 2, 1, 17, 28, 20, 6, 4, 1, 33, 82, 72, 26, 12, 2, 1, 65, 244, 272, 126, 50, 8, 2, 1, 129, 730, 1056, 626, 252, 50, 12, 2, 1, 257, 2188, 4160, 3126, 1394, 344, 80, 12, 4, 1, 513, 6562, 16512, 15626, 8052, 2402, 576, 90, 18, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2018

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,     1,     1,  ...
  2,   3,   5,    9,    17,    33,  ...
  2,   4,  10,   28,    82,   244,  ...
  2,   6,  20,   72,   272,  1056,  ...
  2,   6,  26,  126,   626,  3126,  ...
  4,  12,  50,  252,  1394,  8052,  ...
		

Crossrefs

Columns k=0..4 give A034444, A001615, A065958, A065959, A065960.
Cf. A008683, A059379, A059380, A320974 (diagonal).

Programs

  • Mathematica
    Table[Function[k, n^k Product[1 + Boole[PrimeQ[d]]/d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j]^2 PolyLog[-k, x^j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[MoebiusMu[n/d]^2 d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} mu(j)^2*PolyLog(-k,x^j), where PolyLog() is the polylogarithm function.
A(n,k) = Sum_{d|n} mu(n/d)^2*d^k.

A321973 Partial sums of the Dedekind psi_2(k) function, for 1 <= k <= n.

Original entry on oeis.org

0, 1, 6, 16, 36, 62, 112, 162, 242, 332, 462, 584, 784, 954, 1204, 1464, 1784, 2074, 2524, 2886, 3406, 3906, 4516, 5046, 5846, 6496, 7346, 8156, 9156, 9998, 11298, 12260, 13540, 14760, 16210, 17510, 19310, 20680, 22490, 24190, 26270, 27952, 30452, 32302, 34742
Offset: 0

Views

Author

Daniel Suteu, Nov 22 2018

Keywords

Comments

In general, for m >= 1, Sum_{k=1..n} psi_m(k) = Sum_{k=1..n} mu(k)^2 * (Bernoulli(m+1, 1+floor(n/k)) - Bernoulli(m+1, 1)) / (m+1), where mu(k) is the Moebius function and Bernoulli(n,x) are the Bernoulli polynomials.
In general, for m >= 1, Sum_{k=1..n} psi_m(k) ~ n^(m+1) * zeta(m+1) / ((m+1) * zeta(2*(m+1))).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k]^2 * BernoulliB[3, 1 + Floor[n/k]], {k, 1, n}]/3; Array[a, 50, 0] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)^2 * ((n\k)^3/3 + (n\k)^2/2 + (n\k)/6));

Formula

a(n) = Sum_{k=1..n} A065958(k).
a(n) ~ n^3 * zeta(3) / (3*zeta(6)).
a(n) = Sum_{k=1..n} mu(k)^2 * Bernoulli(3, 1+floor(n/k)) / 3.
Previous Showing 11-20 of 21 results. Next