cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A066367 The floor(prime(n)/n)-perfect numbers, where prime(n) denotes the n-th prime and f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

5, 7, 11, 49, 169
Offset: 1

Views

Author

Joseph L. Pe, Dec 21 2001

Keywords

Comments

There do not seem to be any more terms. There are no terms between 170 and 10^5.

Crossrefs

Programs

  • Mathematica
    f[x_] := Floor[Prime[x] / x]; Select[ Range[2, 10^3], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

A066731 f-triperfect numbers, where f(n) = sigma(n) and f-triperfect numbers are defined similarly to f-perfect numbers in A066218.

Original entry on oeis.org

4680, 60192, 179424, 1737000, 2578968, 3441888, 5604192, 6008184, 6331104, 302459850, 320457888, 477229032, 589459104, 731925000, 766073448, 928765600
Offset: 1

Views

Author

Joseph L. Pe, Jan 15 2002

Keywords

Comments

n is f-triperfect iff sum_{k divides n} f(k) = 3*f(n). f-triperfect numbers appear to be rare for many f. For the usual f(n) = n, there are at least 6 f-triperfect numbers known < 3.2 x 10^10, the first being 120. However, there are no f-triperfect numbers < 10^6 for f(n) = n+1 and f(n) = n-1 (if one ignores the trivial n = 1).

Examples

			Divisors of 4680 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 18, 20, 24, 26, 30, 36, 39, 40, 45, 52, 60, 65, 72, 78, 90, 104, 117, 120, 130, 156, 180, 195, 234, 260, 312, 360, 390, 468, 520, 585, 780, 936, 1170, 1560, 2340, 4680}; f applied to these yield {1, 3, 4, 7, 6, 12, 15, 13, 18, 28, 14, 24, 39, 42, 60, 42, 72, 91, 56, 90, 78, 98, 168, 84, 195, 168, 234, 210, 182, 360, 252, 392, 546, 336, 546, 588, 840, 1170, 1008, 1274, 1260, 1092, 2352, 2730, 3276, 5040, 7644, 16380}, which sum to 49140 = 3 * 16380 = 3 * f(4680). Hence 4680 is a term of the sequence.
		

References

  • Wells, D. Curious and Interesting Numbers, Revised Edition. Penguin Books, 1997. (See the entry on "120".)

Crossrefs

Cf. A066218.

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]; Do[If[ Apply[ Plus, Map[ f, Divisors[ n ] ] ] == 3*f[n], Print[n]], {n, 1, 10^7}]

Extensions

a(5)-a(16) from Giovanni Resta, Jul 13 2016

A296075 Sum of deficiencies of divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 1, 13, 12, 13, 5, 17, 6, 19, 7, 19, 20, 23, -10, 24, 24, 22, 13, 29, 4, 31, 6, 31, 32, 33, -16, 37, 36, 37, -2, 41, 12, 43, 25, 30, 44, 47, -37, 48, 34, 49, 31, 53, 8, 53, 6, 55, 56, 59, -49, 61, 60, 46, 7, 63, 28, 67, 43, 67, 36, 71, -78, 73, 72, 58, 49, 75, 36, 79, -27, 63, 80, 83, -47, 83
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Comments

a(n)=0 for n in A066218. Are 1 and 12 the only solutions to a(n)=1? - Robert Israel, Dec 04 2017

Examples

			For n = 6, whose divisors are 1, 2, 3, 6, their deficiencies are 1, 1, 2, 0, thus a(6) = 1 + 1 + 2 + 0 = 4.
For n = 24, whose divisors are 1, 2, 3, 4, 6, 8, 12, 24, their deficiencies are 1, 1, 2, 1, 0, 1, -4, -12, thus a(24) = 1 + 1 + 2 + 1 + 0 + 1 + -4 + -12 = -10.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(2*t-numtheory:-sigma(t), t=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Dec 04 2017
  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, 2 * Times @@ f1 @@@ f - Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296075(n) = sumdiv(n,d,A033879(d));

Formula

a(n) = Sum_{d|n} A033879(d).
a(n) = A296074(n) + A033879(n).
If m and n are coprime, a(m*n) = 2*a(m)*A000203(n)+2*a(n)*A000203(m)-a(m)*a(n)-2*A000203(m)*A000203(n). - Robert Israel, Dec 04 2017
a(n) = 2*A000203(n) - A007429(n). - Ridouane Oudra, Jul 29 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6 - Pi^4/72) * n^2. - Amiram Eldar, Dec 04 2023

A221219 Numbers k such that sigma(k) divides Sum_{d|k} sigma(d).

Original entry on oeis.org

1, 198, 608, 4680, 11322, 20826, 56608, 60192, 179424, 1737000, 2578968, 3055150, 3441888, 5604192, 6008184, 6331104, 302459850, 320457888, 477229032, 565344850, 579667086, 589459104, 731925000, 766073448, 907521650, 928765600, 3586977576, 3732082848, 6487717600
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2013

Keywords

Comments

A066218 is a subsequence of this sequence.
Numbers k such that A000203(k) divides A007429(k). - Jaroslav Krizek, Dec 22 2018
Corresponding values of (Sum_{d|k} sigma(d)) / sigma(k) for numbers k from this sequence: 1, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, ... - Jaroslav Krizek, Dec 22 2018

Examples

			4680 is in the sequence because sigma(4680)=16380, its proper divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 18, 20, 24, 26, 30, 36, 39, 40, 45, 52, 60, 65, 72, 78, 90, 104, 117, 120, 130, 156, 180, 195, 234, 260, 312, 360, 390, 468, 520, 585, 780, 936, 1170, 1560, 2340 and the sum of their sigma values is 32760. Finally 32760/16380=2.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..1000000] | &+[SumOfDivisors(d): d in Divisors(k)] mod  SumOfDivisors(k) eq 0] // Jaroslav Krizek, Dec 22 2018
    
  • Maple
    with(numtheory);
    A221219:=proc(q) local a,b,j,n;
    for n from 1 to q do a:=divisors(n); b:=add(sigma(a[j]),j=1..nops(a));
      if type(b/sigma(n),integer) then print(n); fi; od; end:
    A221219(10^10);
  • Mathematica
    f1[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f2[p_, e_] := (p^(e+1) - 1)/(p - 1); aQ[1] = True; aQ[n_] := Module[{f = FactorInteger[n]}, Divisible[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Select[Range[10^5], aQ] (* Amiram Eldar, Dec 23 2018 *)
  • PARI
    isok(n) = (sumdiv(n, d, sigma(d)) % sigma(n) == 0); \\ Michel Marcus, Dec 22 2018

Extensions

a(10)-a(28) from Donovan Johnson, Apr 05 2013
1 prepended by Jaroslav Krizek, Dec 22 2018

A066230 f-perfect numbers, where f(m) = m - 1.

Original entry on oeis.org

1, 12, 196, 368, 1696, 30848, 437745, 2075648, 8341504, 33452032, 34355150848, 562949131337728, 2305842943715442688, 590295809173294678016
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

f-perfect numbers are defined in A066218.
Equivalently, let g(n) = sigma(n)-n-d(n)+2, where d(n) is the number of divisors of n and sigma(n) is their sum. Then n is in the sequence if g(n)=n.
If 2^k - 2*k + 1 is prime (i.e. k in A301744), then 2^(k-1)*(2^k - 2*k + 1) is a term. The only known terms not of this form are 1, 196, and 437745. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jul 31 2005; updated by Max Alekseyev, Jul 30 2025
If 2^(i + 1)-(2i + 1) is prime then n = 2^i*(2^(i + 1)-(2i + 1)) is in the sequence because sigma(n)-d(n) + 2 = (2^(i + 1)-1)*(2^(i + 1)-2i)-2(i + 1) + 2 = 2^(i + 1)*(2^(i + 1)-(2i + 1)) = 2n, so sigma(n)-n-d(n) + 2 = n. - Farideh Firoozbakht, Sep 18 2006

Examples

			f(12) = 11 = 0 + 1 + 2 + 3 + 5 = f(1) + f(2) + f(3) + f(4) + f(6), hence 12 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[ n_ ] := DivisorSigma[ 1, n ]-n-DivisorSigma[ 0, n ]+2; For[ n=1, True, n++, If[ g[ n ]==n, Print[ n ] ] ]

Extensions

Edited by Dean Hickerson, Jan 10 2002.
More terms from Jason Earls, May 14 2002
2 more terms from Farideh Firoozbakht, Sep 18 2006
a(11) from Donovan Johnson, Jun 25 2012
a(12)-a(14) from Max Alekseyev, Jul 11 2025

A066229 f-perfect numbers, where f(m) = m + 1.

Original entry on oeis.org

4, 10, 44, 2336, 8896, 34432, 449295, 549775212544, 2251801457852416, 9007202677293056, 9223372167851278336, 20055918935605248255
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

f-perfect numbers are defined in A066218.
From Farideh Firoozbakht, Sep 18 2006: (Start)
n is in the sequence iff sigma(n) = 2*n - d(n) + 2, where d(n) is number of positive divisors of n.
If 2^(i+1) + 2*i - 1 is prime then n = 2^i*(2^(i+1) + 2*i - 1) is in the sequence because sigma(n) + d(n) - 2 = (2^(i+1) - 1)*(2^(i+1) + 2*i) + 2*(i+1) - 2 = 2^(2*i+2) + 2*i*2^(i+1) - 2^(i+1) = 2^(i+1)*(2^(i+1) + 2*i - 1) = 2*n, so sigma(n) = 2*n - d(n) + 2.
Hence if i is in {1, 2, 5, 6, 7, 19, 25, 26, 31, 38, 62, 80, 97, 110, 126, 133, 137, 409, 469, 685, 758, 1004, 1025, 1385, 2077, 2646, 2969, 3438, 7806, 8683, ...} then 2^i*(2^(i+1) + 2*i - 1) is in the sequence. 10, 44, 2336, 8896, 34432, 549775212544, 2251801457852416, 9007202677293056, 9223372167851278336, 151115727472444489859072, ... are such terms. (End)
Also, numbers n such that the number of nontrivial proper subgroups of a dihedral group D_{2n} is the same as its order. - Ivan Neretin, Jun 21 2016, after Dietrich Burde, see MSE link

Examples

			f(10) = 11 = 2 + 3 + 6 = f(1) + f(2) + f(5), hence 10 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 500000 ], DivisorSigma[ 1, # ] == 2# - DivisorSigma[ 0, # ] + 2 & ] (* Farideh Firoozbakht, Sep 18 2006 *)
    f[x_] := x + 1; Select[ Range[ 1, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
  • PARI
    isok(m) = sigma(m) == 2*m-numdiv(m)+2; \\ Michel Marcus, Mar 13 2020

Extensions

a(8) from Giovanni Resta, Aug 21 2013
a(9)-a(11) from Farideh Firoozbakht confirmed and a(12) added by Max Alekseyev, Jul 30 2025

A066511 f-amicable numbers where f(n) = n-1.

Original entry on oeis.org

100, 110, 1806, 1872, 2404, 3742, 12488, 14378, 25130, 26696, 53418, 57448, 61962, 64938, 67528, 67624, 172362, 187624, 195114, 208072, 591882, 643624, 790758, 938948, 1361562, 1381624, 1803776, 1877682, 1892224, 2091770, 3335288, 3559402, 6585656, 8810794
Offset: 1

Views

Author

Joseph L. Pe, Jan 04 2002

Keywords

Comments

f-amicable pairs are defined similarly to f-perfect numbers in A066218. That is, a, b is a f-amicable pair if f(a) = D(b) and f(b) = D(a), where D(n) = sum_{k divides n, k
Equivalently, let g(n) = sigma(n)-n-d(n)+2, where d(n) is the number of divisors of n and sigma(n) is their sum. Then n is in the sequence if g(g(n))=n but g(n) != n. (Sequence A066230 contains the solutions of g(n)=n.)

Examples

			Proper divisors of 100 = {1, 2, 4, 5, 10, 20, 25, 50}. f applied to these divisors = {0, 1, 3, 4, 9, 19, 24, 49}; their sum = 109. So D(100) = f(110). proper divisors of 110 = {1, 2, 5, 10, 11, 22, 55}. f applied to these divisors = {0, 1, 4, 9, 10, 21, 54}; their sum = 99. So D(110) = f(100). Therefore 100, 110 is an f-amicable pair.
		

Crossrefs

Programs

  • Mathematica
    g[ n_ ] := DivisorSigma[ 1, n ]-n-DivisorSigma[ 0, n ]+2; For[ n=1, True, n++, If[ g[ g[ n ] ]==n&&g[ n ]!=n, Print[ n ] ] ]

Extensions

Edited by Dean Hickerson, Jan 10 2002.
More terms from Amiram Eldar, Oct 02 2019

A066573 Pairs (x, y), x < y, of f-amicable numbers where f(k) = floor(|k*sin(k)|) sorted by increasing y, then increasing x; f-amicable numbers are defined in A066511.

Original entry on oeis.org

1, 3, 22, 223, 283, 355, 22, 421, 389, 1065, 365, 1508, 2130, 3079, 1065, 69203, 51872, 127539, 83282, 128604, 152628, 252271, 191963, 295294, 130252, 459590, 717615, 1401314, 2840, 7189717, 1258370, 10269235, 2130, 11671711, 11519862, 19177306, 17002972, 21316045
Offset: 1

Author

Joseph L. Pe, Jan 07 2002

Keywords

Examples

			Proper divisors of 22 are {1,2,11}; f applied to these = {0, 1, 10}, which sum to 11 = f(223). Proper divisors of 223 are {1}; f applied to these = {0}, which sum to 0 = f(22). Hence (22,223) is an f-amicable pair.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Floor[Abs[x*Sin[x]]]; d[x_] := Apply[ Plus, Map[ f, Divisors[ x] ] ] - f[ x]; m = Table[{x, y}, {x, 1, 1000}, {y, 1, 1000}]; Do[a = m[[i, j]]; If[ (a[[1]] < a[[2]]) && (f[a[[1]]] == d[a[[2]]]) && (f[a[[2]]] == d[a[[1]]]), Print[{i, j}]], {j, 1, 1000}, {i, 1, 1000}]

Extensions

More terms and entry revised by Sean A. Irvine, Oct 29 2023

A291882 a(n) is the least number k such that sigma(k+n) = Sum_{j=1..i} sigma(d_j), where d_j are the divisors of k.

Original entry on oeis.org

1, 2, 10, 1183, 4514, 1179, 38, 3325, 9, 126855, 290, 261, 18, 6, 1930, 104771947, 344, 58, 326, 117, 270754, 13875, 32, 45, 32, 74, 70, 38, 18, 21200761175, 206, 1179, 86, 16, 56, 357, 85, 18, 124, 39948225, 361, 171, 1118, 63, 122, 38, 30, 239267, 482, 1367247
Offset: 0

Author

Paolo P. Lava, Sep 05 2017

Keywords

Comments

a(123) > 10^11. - Giovanni Resta, Sep 15 2017

Examples

			Divisors of 1183 are 1, 7, 13, 91, 169 and 1183: sigma(1) + sigma(7) + sigma(13) + sigma(91) + sigma(169) + sigma(1183)= 1 + 8 + 14 + 112 + 183 + 1464 = 1782 = sigma(1183+3) and 1183 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,j,k,n; for n from 0 to q do for k from 1 to q do
    a:=divisors(k); b:=add(sigma(a[j]),j=1..nops(a));
    if sigma(k+n)=b then print(k); break; fi; od; od; end: P(10^6);
  • PARI
    a(n) = my(k = 1); while(sigma(k+n) != sumdiv(k, d, sigma(d)), k++); k; \\ Michel Marcus, Sep 19 2017

Extensions

a(15), a(29), a(39), a(75), a(84), a(89), a(111) from Giovanni Resta, Sep 15 2017

A066365 f-perfect numbers, where f(m) = sigma(m)-m.

Original entry on oeis.org

1, 1134, 1476, 1530, 16600, 282555
Offset: 1

Author

Joseph L. Pe, Dec 21 2001

Keywords

Comments

f-perfect numbers for an arithmetical function f is defined in A066218.
Also, numbers m such that 3*sigma(m)-2*m = A007429(m). - Max Alekseyev, Jul 30 2025

Crossrefs

Programs

  • Mathematica
    f[x_] := Abs[DivisorSigma[1, x] - x]; Select[ Range[2, 10^6], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

Edited and a(1)=1 inserted by Max Alekseyev, Jul 30 2025
Previous Showing 11-20 of 23 results. Next