cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A331265 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31^2)^2 = y^2.

Original entry on oeis.org

0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299, 19220, 27683, 39780, 55719, 79856, 114359, 163680, 234183, 327080, 467759, 668856, 956319, 1367240, 1908683, 2728620, 3900699, 5576156, 7971179, 11126940, 15905883, 22737260, 32502539, 46461756, 64854879, 92708600, 132524783
Offset: 1

Views

Author

Mohamed Bouhamida, Feb 12 2020

Keywords

Comments

For the generic case x^2 + (x + p^2)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436, m >= 4 (means p >= 31), the first five consecutive solutions are (0, p^2), (4*m^3+2*m^2-2*m-1, 4*m^4+4*m^3-2*m-1), (8*m^3+8*m^2+4*m, 4*m^4+8*m^3+12*m^2+4*m+1), (12*m^4-40*m^3+44*m^2-20*m+3, 20*m^4-56*m^3+60*m^2-28*m+5), (12*m^4-20*m^3+2*m^2+10*m-4, 20*m^4-28*m^3+14*m-5) and the other solutions are defined by (X(n), Y(n)) = (3*X(n-5) + 2*Y(n-5) + p^2, 4*X(n-5) + 3*Y(n-5) + 2*p^2).
X(n) = 6*X(n-5) - X(n-10) + 2*p^2, and Y(n) = 6*Y(n-5) - Y(n-10) (can be easily proved using X(n) = 3*X(n-5) + 2*Y(n-5) + p^2, and Y(n) = 4*X(n-5) + 3*Y(n-5) + 2*p^2).

Examples

			For p=31 (m=4) the first five (5) consecutive solutions are (0, 961), (279, 1271), (656, 1745), (1139, 2389), (1860, 3379).
		

Crossrefs

Cf. A066436 (Primes of the form 2*m^2 - 1).
Solutions x to x^2+(x+p^2)^2=y^2: A118554 (p=7), A207059 (p=17), A309998 (p=23), this sequence (p=31), A332000 (p=47).

Programs

  • Magma
    I:=[0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299]; [n le 10 select I[n] else 6*Self(n-5) - Self(n-10)+1922: n in [1..100]];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 6, -6, 0, 0, 0, -1, 1}, {0, 279, 656, 1139, 1860, 2883, 4340, 6419, 9156, 13299, 19220}, 36] (* Jean-François Alcover, Feb 12 2020 *)
  • PARI
    concat(0, Vec(x^2*(279 + 377*x + 483*x^2 + 721*x^3 + 1023*x^4 - 217*x^5 - 183*x^6 - 161*x^7 - 183*x^8 - 217*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^30))) \\ Colin Barker, Feb 12 2020

Formula

a(n) = 6*a(n-5) - a(n-10) + 1922 for n >= 11; a(1)=0, a(2)=279, a(3)=656, a(4)=1139, a(5)=1860, a(6)=2883, a(7)=4340, a(8)=6419, a(9)=9156, a(10)=13299.
From Colin Barker, Feb 12 2020: (Start)
G.f.: x^2*(279 + 377*x + 483*x^2 + 721*x^3 + 1023*x^4 - 217*x^5 - 183*x^6 - 161*x^7 - 183*x^8 - 217*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)).
a(n) = a(n-1) + 6*a(n-5) - 6*a(n-6) - a(n-10) + a(n-11) for n>11.
(End)

A124142 Abundant numbers k such that sigma(k) is a perfect power.

Original entry on oeis.org

66, 70, 102, 210, 282, 364, 400, 510, 642, 690, 714, 770, 820, 930, 966, 1080, 1092, 1146, 1164, 1200, 1416, 1566, 1624, 1672, 1782, 2130, 2226, 2250, 2346, 2460, 2530, 2586, 2652, 2860, 2910, 2912, 3012, 3198, 3210, 3340, 3498, 3522, 3560, 3710, 3810
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Comments

Positive integers k such that sigma(k) > 2*k and sigma(k) = a^b where both a and b are greater than 1.
If k is a term with sigma(k) a square, and p and q are members of A066436 that do not divide k, then k*p*q is in the sequence. Thus if A066436 is infinite, so is this sequence. - Robert Israel, Oct 29 2018

Examples

			a(1) = 66 since sigma(66) = 144 = 12^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; fi od od;
  • Mathematica
    filterQ[n_] := With[{s = DivisorSigma[1, n]}, s > 2n && GCD @@ FactorInteger[s][[All, 2]] > 1];
    Select[Range[4000], filterQ] (* Jean-François Alcover, Sep 16 2020 *)
  • PARI
    is(k) = {my(s = sigma(k)); s > 2*k && ispower(s);} \\ Amiram Eldar, Aug 02 2024

A143834 Numbers k such that 2k^2 - 1 is not prime.

Original entry on oeis.org

1, 5, 9, 12, 14, 16, 19, 20, 23, 26, 27, 29, 30, 31, 32, 33, 35, 37, 40, 44, 47, 48, 51, 53, 54, 55, 57, 58, 60, 61, 65, 66, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 82, 83, 84, 86, 88, 89, 90, 93, 94, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 110, 111, 114, 116, 117
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Comments

Complement of A066049.

Crossrefs

Programs

  • Magma
    [n: n in [1..120]| not IsPrime(2*n^2-1)] // Vincenzo Librandi, Jan 28 2011
  • Mathematica
    p = 2; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k],NULL, AppendTo[a, x]], {x, 1, 1000}]; a
    Select[Range[120],!PrimeQ[2#^2-1]&] (* Harvey P. Dale, Mar 14 2018 *)

A219280 Smallest prime of the form ChebyshevT[2^n, x].

Original entry on oeis.org

2, 7, 97, 665857, 708158977, 150038171394905030432003281854339710977
Offset: 0

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[2^n, x] is the 2^n th Chebyshev polynomial of the first kind evaluated at x.
The corresponding numbers x are {2, 2, 2, 3, 2, 8, 164, 29, ...}.
a(7) = T(128, 29) = 2518958009…2561281 contains 226 decimal digits.

Examples

			T(1, x) = x => a(0) = T(1,2) = 2 ;
T(2, x) = 2x^2 - 1 => a(1) = T(2, 2) = 7 ;
T(4, x) = 8x^4 - 8x^2 + 1 => a(2) = T(4,2) = 97.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946), 187-203.

Crossrefs

Programs

  • Mathematica
    Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; ChebyshevT[2^n,k], {n, 0, 7}]

A242930 Primes of the form (k^2+7)/11.

Original entry on oeis.org

37, 53, 193, 373, 421, 673, 1061, 2213, 2753, 3637, 4481, 5237, 5413, 7333, 7541, 8513, 8737, 9781, 11393, 12853, 14401, 15733, 17761, 19237, 21121, 25153, 25537, 27701, 29537, 34273, 34721, 39841, 42533, 47653, 50593, 51137
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 11*p-7 is a perfect square.

Crossrefs

Programs

  • Python
    import sympy
    [(k**2+7)/11 for k in range(10**6) if sympy.ntheory.isprime((k**2+7)/11) & ((k**2+7)/11).is_integer()]

A256917 Primes which are not the sums of two consecutive nonsquares.

Original entry on oeis.org

2, 3, 7, 17, 19, 31, 71, 73, 97, 127, 163, 199, 241, 337, 449, 577, 647, 881, 883, 967, 1151, 1153, 1249, 1459, 1567, 1801, 2179, 2311, 2591, 2593, 2887, 3041, 3361, 3527, 3529, 3697, 4049, 4051, 4231, 4801, 4999, 5407, 6271, 6961, 7687, 7937, 8191, 8713, 9521, 10369, 10657
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 23 2015

Keywords

Comments

The union of 2 and A066436 and A090698.
The sums of two consecutive nonsquares are 5, 8, 11, 13, 15, 18, 21, 23, 25, 27, 29, 32, 35, 37, ...

Examples

			2, 3, 7 are in this sequence because first three sums of two consecutive nonsquares are 5, 8, 11 and 2, 3, 7 are primes.
		

Crossrefs

Programs

  • Mathematica
    Union[{2},Select[Table[2n^2-1,{n,0,1000}],PrimeQ],Select[Table[2n^2+1,{n,0,1000}],PrimeQ]] (* Ivan N. Ianakiev, Apr 24 2015 *)
    Module[{nn=11000,ns},ns=Total/@Partition[Select[Range[nn],!IntegerQ[Sqrt[#]]&],2,1]; Complement[ Prime[Range[PrimePi[Last[ns]]]],ns]] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a256917(maxp) = {
      ps=[2];
      k=1; while((t=2*k^2-1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t])));
      k=1; while((t=2*k^2+1)<=maxp, k++; if(isprime(t), ps=setunion(ps, [t])));
      ps
    }
    a256917(11000) \\ Colin Barker, Apr 23 2015
    
  • PARI
    list(lim)=my(v=List([2]),t); for(k=2,sqrtint((lim+1)\2), if(isprime(t=2*k^2-1), listput(v,t))); for(k=1,sqrtint((lim-1)\2), if(isprime(t=2*k^2+1), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Apr 23 2015

A219281 Smallest number k such that ChebyshevT[2^n, k] is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 8, 164, 29, 60, 213, 181, 652
Offset: 0

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[2^n,x] is the 2^n th Chebyshev polynomial of the first kind evaluated at x.

Examples

			T(1, x) = x => T(1,2) = 2 is prime => a(0) = 2;
T(2, x) = 2x^2 - 1 => T(2, 2) = 7 is prime => a(1) = 2;
T(4, x) = 8x^4 - 8x^2 + 1 => T(4,2) = 97 is prime => a(2) = 2.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 11 do
      P:= unapply(orthopoly[T](2^n,x),x):
      for k from 1 do if isprime(P(k)) then A[n]:= k; break fi od
    od:
    seq(A[n],n=0..11); # Robert Israel, Aug 13 2018
  • Mathematica
    Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; k, {n, 0, 7}]

Extensions

a(10) and a(11) from Robert Israel, Aug 13 2018
Previous Showing 41-47 of 47 results.