cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A083234 a(n) = (3*10^n + 2^n)/4.

Original entry on oeis.org

1, 8, 76, 752, 7504, 75008, 750016, 7500032, 75000064, 750000128, 7500000256, 75000000512, 750000001024, 7500000002048, 75000000004096, 750000000008192, 7500000000016384, 75000000000032768, 750000000000065536
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A066443.

Crossrefs

Programs

Formula

a(n) = (3*10^n + 2^n)/4.
G.f.: (1-4*x)/((1-10*x)*(1-2*x)).
E.g.f.: (3*exp(10*x) + exp(2*x))/4.
a(n) = 12*a(n-1)-20*a(n-2). - Wesley Ivan Hurt, Apr 24 2021

A092896 Related to random walks on the 4-cube.

Original entry on oeis.org

1, 1, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417, 70368744177665, 281474976710657
Offset: 0

Views

Author

Paul Barry, Mar 12 2004

Keywords

Comments

Gives the denominators in the probability that a random walk on the 4-cube returns to its starting corner on the 2n-th step. Partial sums of A092898. Binomial transform of A092897.
Palindromic numbers in base 2 with an odd number of bits that can be written as 2^(2n) + 1, n >= 1. Palindromic numbers in base 2 with an even number of bits that can be written as 2^(2n+1) + 1 are A087289. - Brad Clardy, Feb 18 2014

Crossrefs

Programs

  • Magma
    [n lt 2 select 1 else 4^(n-1) +1: n in [0..30]]; // G. C. Greubel, Feb 21 2021
  • Maple
    A092896:= n -> `if`(n<2, 1, 4^(n-1) +1); seq(A092896(n), n = 0..30); # G. C. Greubel, Feb 21 2021
  • Mathematica
    CoefficientList[Series[(1 -4x +4x^2 -4x^3)/((1-x)(1-4x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 20 2014 *)
    LinearRecurrence[{5,-4}, {1,1,5,17}, 30] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    Vec((1-4*x+4*x^2-4*x^3)/((1-x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
    
  • Sage
    [1 if n<2 else 4^(n-1) +1 for n in [0..30]]; # G. C. Greubel, Feb 21 2021
    

Formula

G.f.: (1 - 4*x + 4*x^2 - 4*x^3)/((1-x)*(1-4*x)).
a(n) = 1 + 4^n/4 - 0^n/4 + Sum_{k=0..n} binomial(n, k)*k*(-1)^k.
a(n+1) = 4^n + 1 - 0^n = A002450(n+1) - 4*A002450(n-1). - Paul Barry, Mar 13 2008
a(n) = A052539(n-1), n > 1. - R. J. Mathar, Sep 08 2008
Dropping a(0) and interleaving the terms with zeros gives a sequence with e.g.f. (sin(5ix/2)/sin(ix/2) - 3)/2 = cos(2ix) + cos(ix) - 1. Similar expressions apply to A091775 and A074515, which are also power sums representable by the Bernoulli polynomials. - Tom Copeland, Oct 22 2008
a(n) = 4^(n-1) + 1 for n > 1. - Colin Barker, Nov 25 2016
E.g.f.: (exp(4*x) + 4*exp(x) - 1 - 4*x)/4. - G. C. Greubel, Feb 21 2021

A199560 a(n) = (3*9^n + 1)/2.

Original entry on oeis.org

2, 14, 122, 1094, 9842, 88574, 797162, 7174454, 64570082, 581130734, 5230176602, 47071589414, 423644304722, 3812798742494, 34315188682442, 308836698141974, 2779530283277762, 25015772549499854, 225141952945498682, 2026277576509488134, 18236498188585393202
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(3*9^n+1)/2: n in [0..30]];
  • Mathematica
    LinearRecurrence[{10,-9},{2,14},30] (* or *) NestList[9#-4&,2,30] (* Harvey P. Dale, May 30 2012 *)

Formula

a(n) = 2*A066443(n).
a(n) = 9*a(n-1) - 4.
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 2*(1-3*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(x)*(3*exp(8*x) + 1)/2.
a(n) = A199561(n)/2. (End)

A120437 Differences of A037314 (sum of base-3 digits of n = sum of base-9 digits of n).

Original entry on oeis.org

1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1, 547, 1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1, 547, 1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1, 61, 1, 1, 7, 1, 1, 7, 1, 1
Offset: 1

Views

Author

John W. Layman, Jul 17 2006

Keywords

Comments

It appears that sign(a(n+1) - a(n)) gives A102283. - Filip Zaludek, Oct 29 2016
This is clear: a(n) = 1 for n == 1 or 2 (mod 3), and a(n) >= 7 for n == 0 (mod 3): see comment by Franklin T. Adams-Watters on A037314. - Robert Israel, Nov 06 2016

Crossrefs

Programs

Formula

It appears that the sequence is given by the following recursion: a(n)=1 if n=1, a(n)=9a(3^(k-1))-2 if n=3^k for some k>0, a(n)=a(n-3^(k-1)) if 3^(k-1)0. This recursion formula has been verified for n<=2000.
a(n) = A066443(A007949(n)). (This is equivalent to the conjectured recursion above; that recursion is correct.) - Franklin T. Adams-Watters, Jul 24 2006
G.f. g(x) satisfies g(x) = 9 g(x^3) + x*(1+2*x)/(1+x+x^2). - Robert Israel, Nov 06 2016

A158303 Triangle read by rows, A007318 * (A158300 * 0^(n-k)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 6, 8, 1, 8, 12, 32, 8, 1, 10, 20, 80, 40, 32, 1, 12, 30, 160, 120, 192, 32, 1, 14, 42, 280, 280, 672, 224, 128, 1, 16, 56, 448, 560, 1792, 896, 1024, 128, 1, 18, 72, 672, 1008, 4032, 2688, 4608, 1152, 512
Offset: 0

Views

Author

Gary W. Adamson, Mar 15 2009

Keywords

Examples

			First few rows of the triangle =
1;
1, 2;
1, 4, 2;
1, 6, 6, 8;
1, 8, 12, 32, 8;
1, 10, 20, 80, 40, 32;
1, 12, 30, 160, 120, 192, 32;
1, 14, 42, 280, 280, 672, 224, 128;
1, 16, 56, 448, 560, 1792, 896, 1024, 128;
1, 18, 72, 672, 1008, 4032, 2688, 4608, 1152, 512;
1, 20, 90, 960, 1680, 8064, 6720, 15360, 5760, 5120, 512;
...
		

Crossrefs

Cf. A158300, A122983 (row sums), A054879, A066443

Formula

Triangle read by rows, A007318 * (A158300 * 0^(n-k)). Equals binomial transform of an infinite lower triangular matrix with A158300: (1, 2, 2, 8, 8, 32, 32,...) as the main diagonal and the rest zeros.

A362783 Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
Offset: 0

Views

Author

Juri-Stepan Gerasimov, May 03 2023

Keywords

Examples

			Array begins:
=====================================================================
n/k |  0    1      2       3         4          5            6   ...
----+----------------------------------------------------------------
0   |  1    1      1       1         1          1            1   ...
1   |  1    1      1       1         1          1            1   ...
2   |  1    3     11      43       171        683         2731   ...
3   |  1    7     61     547      4921      44287       398581   ...
4   |  1   13    205    3277     52429     838861     13421773   ...
5   |  1   21    521   13021    325521    8138021    203450521   ...
6   |  1   31   1111   39991   1439671   51828151   1865813431   ...
   ...
		

Crossrefs

Columns k=0..3 are A000012, A002061, A060884, A060888.
Rows n=2..4 are A007583, A066443, A299960.
Main diagonal is A179897.

Programs

  • Magma
    /* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
  • PARI
    A(n,k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
    

Formula

A(n,k) = Sum_{j=0..2*k} (-n)^j.

Extensions

a(49) corrected by Andrew Howroyd, Jan 20 2024

A075878 Sum of coefficients of (x1)^(2i(1))*(x2)^(2i(2))*(x3)^(2i(3))*(x4)^(2i(4)) for {(i1),(i2),(i3),(i4)}=0,1,2,... : sum(i)=2n in the expansion of (x1+x2+x3+x4)^(2n) where n >= 1.

Original entry on oeis.org

4, 40, 544, 8320, 131584, 2099200, 33562624, 536903680, 8590065664, 137439477760, 2199025352704, 35184380477440, 562949986975744, 9007199388958720, 144115188612726784, 2305843011361177600, 36893488156009037824, 590295810393065390080, 9444732965876729380864, 151115727452378402652160, 2417851639231457372667904
Offset: 1

Views

Author

Jan Hagberg (jan.hagberg(AT)stat.su.se), Oct 16 2002

Keywords

Comments

For k=3, the sequence divided by 3 is equal to A066443.

Crossrefs

Cf. A066443.
Essentially the same as A092812. - Kang Seonghoon (lifthrasiir(AT)gmail.com), Oct 09 2008

Programs

  • PARI
    a(n, k=4) = 2^(1-k)*sum(r=0,floor((k-1)/2), binomial(k, r)*(k-2*r)^(2*n));
    vector(33,n,a(n)) \\ Joerg Arndt, Apr 21 2025

Formula

a(n, 4) = 2^(1-4)*Sum_{r=0..floor((4-1)/2)} binomial(4, r)*(4-2*r)^(2*n).
a(n, k) = 2^(1-k)*Sum_{r=0..floor((k-1)/2)} binomial(k, r)*(k-2*r)^(2*n) for k>=1.

Extensions

Corrected by T. D. Noe, Nov 07 2006

A102592 a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*5^(n-k).

Original entry on oeis.org

1, 8, 80, 832, 8704, 91136, 954368, 9994240, 104660992, 1096024064, 11477712896, 120196169728, 1258710630400, 13181388849152, 138037296103424, 1445545331654656, 15137947242201088, 158526641599938560
Offset: 0

Views

Author

Paul Barry, Jan 22 2005

Keywords

Comments

In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).

Crossrefs

Formula

G.f.:(1-4x)/(1-12x+16x^2);
a(n) = 12*a(n-1) - 16*a(n-2);
a(n) = sqrt(5)*(sqrt(5)-1)^(2n+1)/10 + sqrt(5)*(sqrt(5)+1)^(2n+1)/10.
a(n) = Sum_{k=0..n} binomial(2n+1, k+1)*5^k. - Paul Barry, May 27 2005
a(n) = 4^(n+1)*A001519(n+1). - N. J. A. Sloane, Apr 13 2011
a(n) = 5^n* 2F1(-n-1/2, -n ; 1/2 ; 1/5). - R. J. Mathar, Aug 23 2024
Previous Showing 11-18 of 18 results.