A345708
a(n) is the least positive number starting an interval of consecutive integers whose product of elements is n.
Original entry on oeis.org
1, 1, 3, 4, 5, 1, 7, 8, 9, 10, 11, 3, 13, 14, 15, 16, 17, 18, 19, 4, 21, 22, 23, 1, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 6, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 7, 57, 58, 59, 3, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1
The square array A068424(n, k) begins:
n\k| 1 2 3 4 5 6
---+---------------------------------------
1| 1 2 6 24 120 720
2| 2 6 24 120 720 5040
3| 3 12 60 360 2520 20160
4| 4 20 120 840 6720 60480
- so a(1) = a(2) = a(6) = a(24) = a(120) = a(720) = 1,
a(3) = a(12) = a(60) = a(360) = 3,
a(4) = a(20) = 4.
-
a(n) = { fordiv (n, d, my (r=n); for (k=d, oo, if (r==1, return (d), r%k, break, r/=k))) }
-
a(n) = { for (i=2, oo, if (n%i!, forstep (j=i-1, 2, -1, my (d=sqrtnint(n,j)); while (d-1 && n%(d-1)==0, d--); while (n%d==0, my (r=n); for
(k=d, oo, if (r==1, return (if (d==2, 1, d)), r%k, break, r/=k)); d++)); break)); return (n) }
-
from sympy import divisors
def a(n):
if n%2 == 0: return n
divs = divisors(n)
for i, d in enumerate(divs[:len(divs)//2]):
p = lastj = d
for j in divs[i+1:]:
if p >= n or j - lastj > 1: break
p, lastj = p*j, j
if p == n: return d
return n
print([a(n) for n in range(1, 70)]) # Michael S. Branicky, Jun 29 2021
A346928
Irregular triangle read by rows; the n-th row contains, in ascending order, the distinct integers of the form n! / m! (with 1 <= m <= n) that do not appear in former rows.
Original entry on oeis.org
1, 2, 3, 6, 4, 12, 24, 5, 20, 60, 120, 30, 360, 720, 7, 42, 210, 840, 2520, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 10, 90, 30240, 151200, 604800, 1814400, 3628800, 11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800
Offset: 1
Triangle begins:
1;
2;
3, 6;
4, 12, 24;
5, 20, 60, 120;
30, 360, 720;
7, 42, 210, 840, 2520, 5040;
8, 56, 336, 1680, 6720, 20160, 40320;
9, 72, 504, 3024, 15120, 60480, 181440, 362880;
10, 90, 30240, 151200, 604800, 1814400, 3628800;
11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800;
...
-
s=[]; for (n=1, 11, p=1; forstep (m=n, 1, -1, if (!setsearch(s, p*=m), s=setunion(s, [p]); print1 (p", "))))
-
from math import factorial
def auptor(rows):
alst, aset = [1], {1}
for n in range(2, rows+1):
fn = factorial(n)
for m in range(n-1, 0, -1):
fm = factorial(m)
q, r = divmod(fn, factorial(m))
if r == 0 and q not in aset:
alst.append(q); aset.add(q)
return alst
print(auptor(11)) # Michael S. Branicky, Oct 17 2021
A347034
Triangle read by columns: T(n,k) is the number of functions from an n-element set to a k-element set that are not one-to-one, k>=n>=1.
Original entry on oeis.org
0, 0, 2, 0, 3, 21, 0, 4, 40, 232, 0, 5, 65, 505, 3005, 0, 6, 96, 936, 7056, 45936, 0, 7, 133, 1561, 14287, 112609, 818503, 0, 8, 176, 2416, 26048, 241984, 2056832, 16736896, 0, 9, 225, 3537, 43929, 470961, 4601529, 42683841, 387057609, 0, 10, 280, 4960, 69760, 848800
Offset: 1
For T(2,3): the number of functions is 3^2 and the number of one-to-one functions is 6, so 3^2 - 6 = 3 and thus T(2,3) = 3.
Triangle T(n,k) begins:
k=1 k=2 k=3 k=4 k=5 k=6
n=1: 0 0 0 0 0 0
n=2: 2 3 4 5 6
n=3: 21 40 65 96
n=4: 232 505 936
n=5: 3005 7056
n=6: 45936
Cf.
A000312,
A002416,
A036679,
A068424,
A089072,
A101030,
A199656,
A344110,
A344112,
A344113,
A344114,
A344115,
A344116.
-
A347034 := proc(n,k)
k^n-k!/(k-n)! ;
end proc:
seq(seq(A347034(n,k),n=1..k),k=1..12) ; # R. J. Mathar, Jan 12 2023
-
Table[k^n - k!/(k - n)!, {k, 12}, {n, k}] // Flatten
-
T(n,k) = k^n - k!/(k - n)!;
row(k) = vector(k, i, T(i, k)); \\ Michel Marcus, Oct 01 2021
A121922
The result of the integration Integral_{t=0..oo} -rho*exp(-rho*s*t)*t^j*s*log(1+t) dt can be written as (F(u,j)*exp(u)*Ei(1,u) + G(u,j))/u^j, where rho>0, s>0, and u=rho*s. Sequence is the regular triangle corresponding to G(u,j).
Original entry on oeis.org
-1, 1, -3, -1, 4, -11, 1, -5, 18, -50, -1, 6, -27, 96, -274, 1, -7, 38, -168, 600, -1764, -1, 8, -51, 272, -1200, 4320, -13068, 1, -9, 66, -414, 2200, -9720, 35280, -109584, -1, 10, -83, 600, -3750, 19920, -88200, 322560, -1026576, 1, -11, 102, -836, 6024, -37620, 199920, -887040, 3265920, -10628640
Offset: 0
At j=7, the result of the integration Integral_{t=0..oo} -rho*exp(-rho*s*t)*t^j*s*log(1+t) dt
can be written as (F(u,7)*exp(u)*Ei(1,u) + G(u,7))/u^7, where
F(u,7) = u^7 - 7*u^6 + 42*u^5 - 210*u^4 + 840*u^3 -2520*u^2 + 5040*u - 5040,
G(u,7) = - u^6 + 8*u^5 - 51*u^4 + 272*u^3 - 1200*u^2 + 4320*u - 13068,
and u=rho*s.
The coefficients of F(u,7), i.e., (1, -7, 42, -210, 840, 2520, 5040, -5040), comprise the 7th row of A008279 (see also A068424). The coefficients of G(u,7), i.e., (-1, 8, -51, 272, -1200, 4320, -13068) give the 7th row of the triangle below.
Triangle begins:
-1
1, -3
-1, 4, -11
1, -5, 18, -50
-1, 6, -27, 96, -274
1, -7, 38, -168, 600, -1764
-1, 8, -51, 272, -1200, 4320, -13068
A145836
Coefficients of a symmetric matrix representation of the 9th falling factorial power, read by antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10080, 0, 0, 0, 15120, 544320, 544320, 15120, 0, 0, 40320, 1958040, 6108480, 1958040, 40320, 0, 0, 24192, 1796760, 12267360, 12267360, 1796760, 24192, 0, 1, 4608, 588168, 7988904, 18329850, 7988904, 588168, 4608, 1, 255, 74124, 2066232, 9874746, 9874746, 2066232, 74124, 255, 3025, 218484, 2229402, 4690350, 2229402, 218484, 3025, 7770, 212436, 965790, 965790, 212436, 7770, 6951, 85680, 185766, 85680, 6951, 2646, 15624, 15624, 2646, 462, 1260, 462, 36, 36, 1
Offset: 0
Full array of coefficients:
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 15120, 40320, 24192, 4608, 255],
[0, 0, 10080, 544320, 1958040, 1796760, 588168, 74124, 3025],
[0, 0, 544320, 6108480, 12267360, 7988904, 2066232, 218484, 7770],
[0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951],
[0, 40320, 1796760, 7988904, 9874746, 4690350, 965790, 85680, 2646],
[0, 24192, 588168, 2066232, 2229402, 965790, 185766, 15624, 462],
[0, 4608, 74124, 218484, 212436, 85680, 15624, 1260, 36],
[1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
-
rows = 9;
c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}];
c[rows, , ] = Nothing;
Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
A385577
Array read by ascending antidiagonals: A(n,m) = n*Pochhammer(n+1,m+1)/(m+2).
Original entry on oeis.org
0, 1, 0, 3, 2, 0, 6, 8, 6, 0, 10, 20, 30, 24, 0, 15, 40, 90, 144, 120, 0, 21, 70, 210, 504, 840, 720, 0, 28, 112, 420, 1344, 3360, 5760, 5040, 0, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 0, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880, 0
Offset: 0
Array begins as:
0, 0, 0, 0, 0, 0, 0, ...
1, 2, 6, 24, 120, 720, 5040, ...
3, 8, 30, 144, 840, 5760, 45360, ...
6, 20, 90, 504, 3360, 25920, 226800, ...
10, 40, 210, 1344, 10080, 86400, 831600, ...
...
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 20.
-
A[n_,m_]:=n*Pochhammer[n+1,m+1]/(m+2); Table[A[n-m,m],{n,0,9},{m,0,n}]//Flatten
Comments