cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A256930 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(3/4)^(2*k).

Original entry on oeis.org

1, 2, 0, 3, 6, 2, 1, 4, 0, 3, 6, 7, 7, 5, 9, 1, 9, 0, 1, 4, 1, 2, 8, 2, 4, 4, 0, 6, 0, 8, 8, 3, 1, 9, 5, 6, 4, 1, 8, 1, 5, 3, 5, 1, 6, 9, 1, 9, 7, 6, 7, 8, 1, 4, 2, 0, 6, 7, 2, 9, 7, 3, 9, 0, 8, 6, 9, 5, 4, 1, 6, 3, 0, 1, 4, 8, 8, 9, 2, 9, 7, 3, 2, 4, 8, 4, 4, 4, 0, 3, 4, 5, 9, 4, 5, 9, 3, 7, 6, 5, 1, 7, 6, 9, 7, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			1.2036214036775919014128244060883195641815351691976781420672...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (31).

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3*Pi/(2*Sqrt[2])], 10, 107] // First
  • PARI
    log(3*Pi/(2*sqrt(2))) \\ Michel Marcus, Apr 13 2015

Formula

Equals log(Gamma(1/4)*Gamma(7/4)).
Equals log(3*Pi/(2*sqrt(2))).

Extensions

Name corrected by Amiram Eldar, Oct 12 2024

A257094 Decimal expansion of Gamma(9/4).

Original entry on oeis.org

1, 1, 3, 3, 0, 0, 3, 0, 9, 6, 3, 1, 9, 3, 4, 6, 3, 4, 7, 4, 7, 8, 3, 3, 9, 1, 1, 1, 2, 0, 8, 6, 4, 7, 5, 0, 0, 9, 3, 5, 9, 8, 9, 9, 0, 0, 9, 0, 0, 0, 2, 0, 4, 5, 8, 5, 7, 2, 9, 3, 0, 6, 2, 4, 8, 6, 5, 5, 9, 9, 7, 6, 3, 6, 0, 5, 8, 5, 2, 8, 5, 0, 5, 0, 5, 7, 3, 7, 5, 4, 2, 7, 2, 6, 0, 5, 7, 5, 9, 3, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2015

Keywords

Examples

			1.13300309631934634747833911120864750093598990090002...
		

Crossrefs

Cf. A068466 (Gamma(1/4)), A068465 (3/4), A068467 (5/4), A203130 (7/4), A257095 (11/4).

Programs

  • Mathematica
    RealDigits[Gamma[9/4], 10, 102] // First
  • PARI
    gamma(9/4) \\ Michel Marcus, Apr 16 2015

Formula

Equals (5/16)*Gamma(1/4).

A257095 Decimal expansion of Gamma(11/4).

Original entry on oeis.org

1, 6, 0, 8, 3, 5, 9, 4, 2, 1, 9, 8, 5, 5, 4, 5, 6, 5, 9, 2, 3, 1, 9, 4, 1, 5, 2, 3, 1, 6, 3, 7, 9, 3, 8, 1, 6, 4, 9, 2, 2, 5, 1, 5, 1, 3, 1, 4, 1, 8, 4, 2, 6, 7, 7, 2, 3, 9, 5, 3, 1, 1, 0, 6, 5, 0, 5, 3, 9, 2, 5, 4, 1, 0, 6, 0, 1, 7, 2, 8, 4, 3, 8, 7, 3, 7, 8, 8, 7, 4, 3, 7, 8, 2, 0, 7, 6, 0, 2, 4, 8, 8, 9, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2015

Keywords

Examples

			1.6083594219855456592319415231637938164922515131418426772395311...
		

Crossrefs

Cf. A068466 (Gamma(1/4)), A068465 (3/4), A068467 (5/4), A203130 (7/4), A257094 (9/4).

Programs

  • Mathematica
    RealDigits[Gamma[11/4], 10, 104] // First
  • PARI
    gamma(11/4) \\ Michel Marcus, Apr 16 2015

Formula

(21/16)*Pi*sqrt(2)/Gamma(1/4).
Also equals Integral_{0..infinity} t^(7/4)*exp(-t) dt.

A257406 Decimal expansion of Integral_{0..infinity} log(x)/cosh(x) dx (negated).

Original entry on oeis.org

5, 2, 0, 8, 8, 5, 6, 1, 2, 6, 0, 1, 9, 7, 6, 8, 9, 1, 0, 8, 0, 1, 8, 7, 7, 3, 7, 5, 7, 9, 4, 5, 4, 4, 3, 9, 0, 6, 3, 6, 3, 8, 3, 5, 5, 4, 4, 6, 2, 8, 5, 3, 4, 9, 9, 7, 5, 3, 7, 5, 5, 8, 4, 2, 1, 1, 5, 4, 3, 2, 0, 7, 6, 2, 9, 4, 6, 3, 4, 7, 8, 5, 3, 9, 7, 8, 6, 6, 4, 1, 6, 0, 8, 0, 1, 8, 2, 9, 9, 6, 2, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 22 2015

Keywords

Examples

			-0.5208856126019768910801877375794544390636383554462853499753755842...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/2)*Log[4*Pi^3/Gamma[1/4]^4], 10, 103] // First
    RealDigits[Integrate[-Log[x]/Cosh[x],{x,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Feb 05 2025 *)
  • PARI
    (Pi/2)*log(4*Pi^3/gamma(1/4)^4) \\ Michel Marcus, Apr 22 2015

Formula

(Pi/2)*log(4*Pi^3/Gamma(1/4)^4).
Also equals 2*Integral_{0..1} (1/(x^2+1))*log(log(1/x)) dx.
Also equals 2*Integral_{Pi/4..Pi/2} log(log(tan(x))) dx.

A263809 Decimal expansion of C_{1/2}, a constant related to Kolmogorov's inequalities.

Original entry on oeis.org

2, 7, 8, 6, 4, 0, 7, 8, 5, 9, 3, 7, 1, 3, 5, 3, 7, 1, 8, 3, 6, 8, 4, 9, 2, 5, 2, 0, 6, 5, 0, 7, 3, 6, 4, 8, 5, 3, 1, 4, 9, 6, 2, 4, 3, 5, 0, 3, 1, 2, 3, 5, 7, 5, 7, 9, 4, 8, 5, 6, 3, 2, 6, 3, 7, 6, 0, 6, 4, 8, 0, 2, 5, 1, 5, 0, 0, 7, 3, 2, 6, 1, 3, 5, 7, 2, 9, 4, 6, 5, 9, 7, 1, 5, 6, 1, 9, 1, 1, 1, 9, 9, 3, 1, 3
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2015

Keywords

Examples

			2.78640785937135371836849252065073648531496243503123575794856326376...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/4]^2/(Pi*Gamma[3/4]^2), 10, 105] // First
  • PARI
    gamma(1/4)^2/(Pi*gamma(3/4)^2) \\ Michel Marcus, Oct 27 2015

Formula

C_{1/2} = gamma(1/4)^2/(Pi*gamma(3/4)^2).
Equals (1/Pi^2)*(integral_{0..Pi} sqrt(csc(t)) dt)^2.
Also equals (8/Pi^2)*A093341^2.

A275322 Decimal expansion of AGM(1, sqrt(2))^2/Pi.

Original entry on oeis.org

4, 5, 6, 9, 4, 6, 5, 8, 1, 0, 4, 4, 4, 6, 3, 6, 2, 5, 3, 7, 4, 9, 6, 6, 6, 2, 2, 5, 4, 7, 6, 8, 3, 3, 3, 6, 6, 1, 1, 7, 6, 7, 7, 3, 0, 0, 1, 4, 8, 3, 1, 5, 0, 8, 3, 9, 4, 3, 6, 2, 2, 4, 7, 2, 6, 7, 4, 8, 4, 3, 5, 8, 0, 7, 0, 8, 0, 5, 3, 8, 5, 5
Offset: 0

Views

Author

Dimitris Valianatos, Jul 23 2016

Keywords

Comments

Conjecture: Equals Product_{n odd} (n/(n+2) if n == 1 (mod 4), (n+2)/n otherwise) = (1/3) * (5/3) * (5/7) * (9/7) * (9/11) * (13/11) * (13/15) * (17/15) * (17/19) * (21/19) * (21/23) * (25/23) * (25/27) * ...

Examples

			0.45694658104446362537496662254768...
		

Crossrefs

Cf. A053004 (AGM(1, sqrt(2))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 8*Pi(R)^2/Gamma(1/4)^4; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf(GaussAGM(1,sqrt(2))^2/Pi,100); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    First@ RealDigits@ N[ArithmeticGeometricMean[1, Sqrt[2]]^2/Pi, 120] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    agm(1, sqrt(2)) ^ 2 / Pi
    
  • PARI
    8*Pi^2/gamma(1/4)^4 \\ Altug Alkan, Oct 08 2018
    

Formula

Equals 8*Pi^2/Gamma(1/4)^4 = 4*Gamma(3/4)^2/Gamma(1/4)^2. - Vaclav Kotesovec, Sep 22 2016

A359533 Decimal expansion of Sum_{k>=0} (-1/64)^k*binomial(2*k, k)^3*(4*k + 1)*H_k, where H_k is the k-th harmonic number (negated).

Original entry on oeis.org

2, 7, 6, 4, 2, 7, 2, 0, 4, 2, 4, 5, 9, 8, 6, 5, 7, 3, 0, 9, 2, 6, 3, 9, 8, 2, 5, 6, 1, 6, 8, 8, 9, 9, 4, 6, 7, 8, 3, 7, 4, 0, 7, 9, 5, 1, 9, 0, 4, 8, 5, 0, 6, 3, 0, 3, 2, 7, 7, 6, 9, 2, 0, 2, 7, 0, 3, 3, 7, 9, 6, 9, 4, 4, 5, 8, 9, 8, 7, 9, 7, 1, 0, 9, 8, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Examples

			0.276427204245986573092639825616889946783740795...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[(Gamma[1/8]Gamma[3/8]/(Gamma[1/4]Gamma[3/4]))^2/(6Sqrt[2]Pi)-4Log[2]/Pi,100]]]

Formula

Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8)/(Gamma(1/4)*Gamma(3/4)))^2/(6*sqrt(2)*Pi).
Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8))^2/(12*sqrt(2)*Pi^3).

A371855 Decimal expansion of Integral_{x=-oo..oo} exp(-x^4) dx.

Original entry on oeis.org

1, 8, 1, 2, 8, 0, 4, 9, 5, 4, 1, 1, 0, 9, 5, 4, 1, 5, 5, 9, 6, 5, 3, 4, 2, 5, 7, 7, 9, 3, 3, 8, 3, 6, 0, 0, 1, 4, 9, 7, 5, 8, 3, 8, 4, 1, 4, 4, 0, 0, 3, 2, 7, 3, 3, 7, 1, 6, 6, 8, 8, 9, 9, 9, 7, 8, 4, 9, 5, 9, 6, 2, 1, 7, 6, 9, 3, 6, 4, 5, 6, 0, 8, 0, 9, 1, 8, 0, 0, 6, 8, 3, 6, 1, 6, 9, 2, 1, 5, 0, 1, 8, 0, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.8128049541109541559653425779338360014975838...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2 Gamma[5/4], 10, 104][[1]]

Formula

Equals 2 * Gamma(5/4).
Equals 2 * A068467.
Equals A068466 / 2.

A240965 Decimal expansion of integral_(0..1) K(1-x^2)^3 dx, where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

2, 3, 6, 3, 4, 0, 9, 0, 0, 1, 6, 1, 5, 4, 2, 3, 1, 5, 3, 6, 6, 3, 2, 6, 7, 4, 5, 6, 6, 8, 6, 5, 1, 6, 4, 1, 7, 4, 8, 4, 1, 3, 9, 5, 1, 5, 8, 8, 6, 1, 3, 9, 3, 2, 8, 8, 5, 2, 9, 0, 5, 2, 6, 8, 0, 3, 8, 1, 9, 4, 8, 7, 8, 2, 6, 2, 0, 5, 9, 5, 9, 1, 2, 0, 8, 1, 5, 2, 0, 7, 9, 6, 6, 3, 0, 5, 8, 8, 1, 1, 6, 7, 5, 5, 5
Offset: 2

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Examples

			23.634090016154231536632674566865164174841395158861393288529...
		

Crossrefs

Cf. A068466.

Programs

  • Mathematica
    (* NIntegrate[EllipticK[1 - x^2]^3, {x, 0, 1}] *)
    RealDigits[Gamma[1/4]^8/(128*Pi^2), 10, 105] // First
  • PARI
    intnum(x=0,1,ellK(sqrt(1-x^2))^3) \\ Charles R Greathouse IV, Feb 05 2025
    
  • PARI
    gamma(1/4)^8/128/Pi^2 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Gamma(1/4)^8/(128*Pi^2).

A246856 Decimal expansion of 'alpha', the threshold angle associated with the best constant in [a variation of] Hardy's inequality for a domain defined as a non-convex plane sector of angle alpha.

Original entry on oeis.org

4, 8, 5, 6, 0, 5, 5, 3, 2, 0, 9, 3, 1, 6, 6, 2, 0, 3, 8, 6, 2, 6, 4, 3, 5, 3, 4, 8, 9, 0, 5, 2, 9, 3, 9, 8, 5, 5, 1, 9, 5, 3, 7, 8, 3, 1, 0, 2, 0, 8, 8, 0, 2, 5, 8, 3, 8, 3, 4, 6, 2, 1, 2, 4, 3, 6, 0, 6, 2, 2, 7, 9, 0, 2, 3, 6, 5, 5, 0, 5, 9, 2, 8, 0, 6, 9, 8, 2, 6, 2, 7, 2, 6, 5, 7, 8, 9, 6, 2, 4, 2, 9
Offset: 1

Views

Author

Jean-François Alcover, Sep 05 2014

Keywords

Examples

			4.85605532093166203862643534890529398551953783102088...
		

Crossrefs

Programs

  • Mathematica
    alpha = Pi + 4*ArcTan[4*Gamma[3/4]^2/Gamma[1/4]^2]; RealDigits[alpha, 10, 102] // First
  • PARI
    Pi + 4*atan(4*gamma(3/4)^2/gamma(1/4)^2) \\ Michel Marcus, Sep 05 2014

Formula

alpha = Pi + 4*arctan(4*Gamma(3/4)^2/Gamma(1/4)^2).
Previous Showing 31-40 of 45 results. Next