cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A328260 a(n) = n * omega(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 24, 13, 28, 30, 16, 17, 36, 19, 40, 42, 44, 23, 48, 25, 52, 27, 56, 29, 90, 31, 32, 66, 68, 70, 72, 37, 76, 78, 80, 41, 126, 43, 88, 90, 92, 47, 96, 49, 100, 102, 104, 53, 108, 110, 112, 114, 116, 59, 180, 61, 124, 126, 64, 130, 198, 67, 136, 138, 210
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*(#PrimeDivisors(n)):n in [2..70]]; // Marius A. Burtea, Oct 10 2019
    
  • Mathematica
    Table[n PrimeNu[n], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n)=n*omega(n) \\ Charles R Greathouse IV, Mar 16 2022

Formula

G.f.: Sum_{k>=1} prime(k) * x^prime(k) / (1 - x^prime(k))^2.
a(n) = bigomega(rad(n)^n).
a(n) = Sum_{d|n} A061397(n/d) * d.
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/log log x. - Charles R Greathouse IV, Mar 16 2022

A329031 a(n) = A327860(A328841(n)).

Original entry on oeis.org

0, 1, 1, 5, 1, 5, 1, 7, 8, 31, 8, 31, 1, 7, 8, 31, 8, 31, 1, 7, 8, 31, 8, 31, 1, 7, 8, 31, 8, 31, 1, 9, 10, 41, 10, 41, 12, 59, 71, 247, 71, 247, 12, 59, 71, 247, 71, 247, 12, 59, 71, 247, 71, 247, 12, 59, 71, 247, 71, 247, 1, 9, 10, 41, 10, 41, 12, 59, 71, 247, 71, 247, 12, 59, 71, 247, 71, 247, 12, 59, 71, 247, 71, 247, 12, 59
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Crossrefs

Cf. A060735 (the positions of ones).

Programs

  • PARI
    A329031(n) = { my(s=0, m=1, p=2); while(n, if(n%p, m *= p; s += (1/p)); n = n\p; p = nextprime(1+p)); (s*m); };

Formula

a(n) = A003415(A328571(n)) = A069359(A328571(n)).

A329039 If n = Product p_i^e_i, a(n) = n * Sum ((e_i - 1)/p_i).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 8, 3, 0, 0, 6, 0, 0, 0, 24, 0, 6, 0, 10, 0, 0, 0, 24, 5, 0, 18, 14, 0, 0, 0, 64, 0, 0, 0, 30, 0, 0, 0, 40, 0, 0, 0, 22, 15, 0, 0, 72, 7, 10, 0, 26, 0, 36, 0, 56, 0, 0, 0, 30, 0, 0, 21, 160, 0, 0, 0, 34, 0, 0, 0, 96, 0, 0, 15, 38, 0, 0, 0, 120, 81, 0, 0, 42, 0, 0, 0, 88, 0, 30, 0, 46, 0, 0, 0, 192, 0, 14, 33, 70, 0, 0, 0, 104, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Crossrefs

Cf. A005117 (positions of zeros).

Programs

  • PARI
    A329039(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, ((f[i, 2]-1)/f[i, 1])));

Formula

a(n) = A003415(n) - A069359(n).

A329351 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329350(i) = A329350(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 4, 12, 9, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 32, 33, 34, 35, 2, 36, 37, 38, 39, 18, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 44, 53, 2, 54, 55, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 29, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Restricted growth sequence transform of A329350.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A069359(i) = A069359(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329350(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A276086(d))); (m); };
    v329351 = rgs_transform(vector(up_to, n, A329350(n)));
    A329351(n) = v329351[n];

A329352 a(n) = Product_{d|n} A019565(d)^A010051(n/d).

Original entry on oeis.org

1, 2, 2, 3, 2, 18, 2, 5, 6, 30, 2, 75, 2, 90, 60, 7, 2, 210, 2, 105, 180, 126, 2, 245, 10, 210, 14, 525, 2, 66150, 2, 11, 252, 66, 300, 1155, 2, 198, 420, 385, 2, 173250, 2, 825, 2940, 990, 2, 847, 30, 3234, 132, 1155, 2, 15246, 420, 2695, 396, 2310, 2, 2223375, 2, 6930, 1540, 13, 700, 64350, 2, 195, 1980, 171990, 2, 5005, 2, 390, 32340, 975, 1260
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Examples

			The divisors of 30 are [1, 2, 3, 5, 6, 10, 15, 30], of which only d = 6, 10 and 15 are such that 30/d is a prime, thus a(n) = A019565(6) * A019565(10) * A019565(15) = 15 * 21 * 210 = 66150.
		

Crossrefs

Cf. A010051, A019565, A048675, A069359, A329353 (rgs-transform).
Cf. also A329350.
Differs from A300832 for the first time at n=30, where a(30) = 66150, while A300832(30) = 132300.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A329352(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A019565(d))); (m); };

Formula

a(n) = Product_{d|n} A019565(d)^A010051(n/d).
For all n, A048675(a(n)) = A069359(n).

A345930 a(n) = A344756(A276086(n)).

Original entry on oeis.org

1, 1, 1, 2, 7, 1, 1, 1, 1, 13, 41, 2, 9, 11, 37, 2, 47, 3, 11, 7, 43, 19, 53, 4, 13, 17, 49, 11, 59, 1, 1, 1, 1, 17, 55, 1, 1, 1, 1, 106, 317, 19, 73, 92, 289, 127, 359, 13, 87, 113, 331, 148, 401, 11, 101, 134, 373, 169, 443, 2, 11, 13, 47, 2, 61, 17, 69, 86, 277, 121, 347, 2, 83, 107, 319, 2, 389, 31, 97, 128, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Crossrefs

Cf. also A342002, A346474, A346475 (compare the scatter plots).

Programs

Formula

a(n) = A344756(A276086(n)).
a(n) = A327860(n) / A346469(n) = A327860(n) / gcd(A327860(n), A329029(n)).

A349338 Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 7, 6, 8, 9, 11, 8, 13, 13, 14, 12, 17, 14, 19, 14, 20, 21, 23, 16, 24, 25, 24, 20, 29, 22, 31, 24, 32, 33, 34, 22, 37, 37, 38, 28, 41, 32, 43, 32, 38, 45, 47, 32, 48, 44, 50, 38, 53, 42, 54, 40, 56, 57, 59, 36, 61, 61, 54, 48, 64, 52, 67, 50, 68, 58, 71, 44, 73, 73, 68, 56, 76, 62, 79, 56, 72, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Möbius transform of A230593.
The number of integers k from 1 to n such that gcd(n, k) is a noncomposite number. - Amiram Eldar, Jun 21 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 17 2021 *)
  • PARI
    A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));
    
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); n * vecprod(apply(x -> 1-1/x, p)) * (1 + vecsum(apply(x -> 1/x, p - vector(#e, i, e[i] == 1)~)));} \\ Amiram Eldar, Jun 21 2025

Formula

a(n) = Sum_{d|n} A000010(n/d) * A080339(d).
a(n) = Sum_{d|n} A008683(n/d) * A230593(d).
a(n) = Sum_{d|n} A349435(n/d) * A348976(d).
a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]
For all n >= 1, a(A005117(n)) = A348976(A005117(n)).
Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - Vaclav Kotesovec, Nov 20 2021

A180253 Call two divisors of n adjacent if the larger is a prime times the smaller. a(n) is the sum of elements of all pairs of adjacent divisors of n.

Original entry on oeis.org

0, 3, 4, 9, 6, 24, 8, 21, 16, 36, 12, 64, 14, 48, 48, 45, 18, 87, 20, 96, 64, 72, 24, 144, 36, 84, 52, 128, 30, 216, 32, 93, 96, 108, 96, 229, 38, 120, 112, 216, 42, 288, 44, 192, 174, 144, 48, 304, 64, 201, 144, 224, 54, 276, 144, 288, 160, 180, 60, 552, 62, 192, 232, 189
Offset: 1

Views

Author

Vladimir Shevelev, Aug 20 2010

Keywords

Comments

The pairs of adjacent divisors of n are counted in A062799(n).
For each divisor d of n we can check in how many pairs it occurs. For each prime divisor p of n, see the exponent of p in the factorization of d. If it's positive (p|d) then it occurs once more. If d*p doesn't divide n, add one to the frequency as well. - David A. Corneth, Dec 17 2018

Examples

			a(4) = (1 + 2) + (2 + 4) = 9.
a(120) = a(3*5*2^3) = 4*6*(3*8 + 4*4 + 4*2 + 3) = 1224.
		

Crossrefs

Programs

  • Mathematica
    divisorSumPrime[n_] := DivisorSum[n, 1+1/# &, PrimeQ[#] &]; a[n_] := DivisorSum[n, #*divisorSumPrime[#]& ]; Array[a, 70] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d*sumdiv(d, p, isprime(p)*(1+1/p))); \\ Michel Marcus, Dec 17 2018
    
  • PARI
    a(n) = my(f = factor(n), res = 0); fordiv(n, d, for(i = 1, #f~, v = valuation(d, f[i, 1]); res+=(d * ((v > 0) + (v < f[i, 2]))))); res \\ David A. Corneth, Dec 17 2018

Formula

a(n) = Sum_{d|n} d*Sum_{p|d} (1 + 1/p) where p is restricted to primes.
a(n) = Sum_{d|n} A069359(d) + Sum_{d|n} d*A001221(d).
a(n) = A323599(n) + A329354(n) = A323599(n) + A328260(n) + A329375(n). - Antti Karttunen, Nov 15 2019
a(p^k) = (p^k - 1)*(p + 1)/(p - 1).
a(p_1*p_2*...*p_m) = m*(p_1 + 1)*(p_2 + 1)*...*(p_m + 1).
a(p*q^k) = (p + 1)*(2*q^k + 3*q^(k - 1) + 3*q^(k - 2) + ... + 3*q + 2).
a(p*q*r^k) = (p + 1)*(q + 1)*(3*r^k + 4*r^(k - 1) + 4*r^(k - 2) + ... + 4*r + 3) and similar for a larger number of distinct prime factors of n.

Extensions

Definition rephrased, entries checked, one example added. - R. J. Mathar, Oct 25 2010

A292786 a(n) = psi(n) - phi(n).

Original entry on oeis.org

0, 2, 2, 4, 2, 10, 2, 8, 6, 14, 2, 20, 2, 18, 16, 16, 2, 30, 2, 28, 20, 26, 2, 40, 10, 30, 18, 36, 2, 64, 2, 32, 28, 38, 24, 60, 2, 42, 32, 56, 2, 84, 2, 52, 48, 50, 2, 80, 14, 70, 40, 60, 2, 90, 32, 72, 44, 62, 2, 128, 2, 66, 60, 64, 36, 124, 2, 76, 52, 120, 2, 120, 2, 78, 80, 84, 36, 144
Offset: 1

Views

Author

Altug Alkan, Sep 23 2017

Keywords

Comments

Even numbers that are not the terms of this sequence are 12, 102, 114, 130, ...

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; Array[psi@# - EulerPhi@# &, 87] (* Robert G. Wilson v, Sep 23 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    a(n) = a001615(n) - eulerphi(n); \\ after Charles R Greathouse IV at A001615

Formula

a(n) = A001615(n) - A000010(n).
a(n) = 2 iff n is prime.
a(n) = 2*A069359(n) iff n is in A070915.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(2*Pi^2) = 0.455945... (A088245). - Amiram Eldar, Dec 05 2023

A344182 a(n) = A344026(n) XOR A344028(n).

Original entry on oeis.org

0, 0, 0, 6, 0, 0, 5, 8, 0, 0, 0, 26, 15, 26, 18, 40, 0, 0, 0, 22, 0, 0, 63, 56, 9, 14, 31, 34, 82, 124, 119, 64, 0, 0, 0, 50, 0, 0, 45, 88, 0, 0, 0, 98, 99, 38, 234, 88, 29, 114, 29, 202, 35, 34, 136, 160, 162, 444, 406, 130, 393, 430, 452, 224, 0, 0, 0, 42, 0, 0, 97, 120, 0, 0, 0, 46, 215, 222, 130, 136, 0, 0, 0, 202
Offset: 0

Views

Author

Antti Karttunen, May 16 2021

Keywords

Crossrefs

Cf. A003415, A003714 (positions of zeros), A005940, A069359, A344026, A344028.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
    A344182(n) = { my(u=A005940(1+n)); bitxor(A003415(u),A069359(u)); };

Formula

a(n) = A344026(n) XOR A344028(n) = A003415(A005940(1+n)) XOR A069359(A005940(1+n)).
Previous Showing 41-50 of 63 results. Next