cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327860 Arithmetic derivative of the primorial base exp-function: a(n) = A003415(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 6, 21, 1, 7, 8, 31, 39, 123, 10, 45, 55, 185, 240, 705, 75, 275, 350, 1075, 1425, 3975, 500, 1625, 2125, 6125, 8250, 22125, 1, 9, 10, 41, 51, 165, 12, 59, 71, 247, 318, 951, 95, 365, 460, 1445, 1905, 5385, 650, 2175, 2825, 8275, 11100, 30075, 4125, 12625, 16750, 46625, 63375, 166125, 14, 77, 91, 329, 420
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Are there any other fixed points after 0, 1, 7, 8 and 2556? (A328110, see also A351087 and A351088).
Out of the 30030 initial terms, 19220 are multiples of 5. (See A327865).
Proof that a(n) is even if and only if n is a multiple of 4: Consider Charlie Neder's Feb 25 2019 comment in A235992. As A276086 is never a multiple of 4, and as it toggles the parity, we only need to know when A001222(A276086(n)) = A276150(n) is even. The condition for that is given in the latter sequence by David A. Corneth's Feb 27 2019 comment. From this it also follows that A166486 gives similarly the parity of terms of A342002, A351083 and A345000. See also comment in A327858. - Antti Karttunen, May 01 2022

Examples

			2556 has primorial base expansion [1,1,1,1,0,0] as 1*A002110(5) + 1*A002110(4) + 1*A002110(3) + 1*A002110(2) = 2310 + 210 + 30 + 6 = 2556. That in turn is converted by A276086 to 13^1 * 11^1 * 7^1 * 5^1 = 5005, whose arithmetic derivative is 5' * 1001 + 1001' * 5 = 1*1001 + 311*5 = 2556, thus 2556 is one of the rare fixed points (A328110) of this sequence.
		

Crossrefs

Cf. A002110 (positions of 1's), A003415, A048103, A276086, A327858, A327859, A327865, A328110 (fixed points), A328233 (positions of primes), A328242 (positions of squarefree terms), A328388, A328392, A328571, A328572, A329031, A329032, A329041, A342002.
Cf. A345000, A351074, A351075, A351076, A351077, A351080, A351083, A351084, A351087 (numbers k such that a(k) is a multiple of k), A351088.
Coincides with A329029 on positions given by A276156.
Cf. A166486 (a(n) mod 2), A353630 (a(n) mod 4).
Cf. A267263, A276150, A324650, A324653, A324655 for omega, bigomega, phi, sigma and tau applied to A276086(n).
Cf. also A351950 (analogous sequence).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Function[k, If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ k, Reverse@ k}]]@ IntegerDigits[#, b] &, 65, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327860(n) = A003415(A276086(n));
    
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ (Standalone version) - Antti Karttunen, Nov 07 2019

Formula

a(n) = A003415(A276086(n)).
a(A002110(n)) = 1 for all n >= 0.
From Antti Karttunen, Nov 03 2019: (Start)
Whenever A329041(x,y) = 1, a(x + y) = A003415(A276086(x)*A276086(y)) = a(x)*A276086(y) + a(y)*A276086(x). For example, we have:
a(n) = a(A328841(n)+A328842(n)) = A329031(n)*A328572(n) + A329032(n)*A328571(n).
A051903(a(n)) = A328391(n).
A328114(a(n)) = A328392(n).
(End)
From Antti Karttunen, May 01 2022: (Start)
a(n) = A328572(n) * A342002(n).
For all n >= 0, A000035(a(n)) = A166486(n). [See comments]
(End)

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A069359 a(n) = n * Sum_{p|n} 1/p where p are primes dividing n.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

Coincides with arithmetic derivative on squarefree numbers: a(A005117(n)) = A068328(n) = A003415(A005117(n)). - Reinhard Zumkeller, Jul 20 2003, Clarified by Antti Karttunen, Nov 15 2019
a(n) = n-1 iff n = 1 or n is a primary pseudoperfect number A054377. - Jonathan Sondow, Apr 16 2014
a(1) = 0 by the standard convention for empty sums.
“Seva” on the MathOverflow link asks if the iterates of this sequence are all eventually 0. - Charles R Greathouse IV, Feb 15 2019

Examples

			a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - _Geoffrey Critzer_, Mar 17 2015
		

Crossrefs

Cf. A322068 (partial sums), A323599 (Inverse Möbius transform).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), this sequence (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Magma
    [0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))):
    seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012
    # second Maple program:
    a:= n-> n*add(1/i[1], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2019
  • Mathematica
    f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b =
    Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)
  • PARI
    a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015
    
  • PARI
    a(n) = my(ps=factor(n)[,1]~);sum(k=1,#ps,n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015
    
  • Python
    from sympy import primefactors
    def A069359(n): return sum(n//p for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
  • Sage
    def A069359(n) :
        D = filter(is_prime, divisors(n))
        return add(n/d for d in D)
    print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012
    

Formula

G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006
a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_{d|n} A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013
a(A054377(n)) = A054377(n) - 1. - Jonathan Sondow, Apr 16 2014
Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015
Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019
From Antti Karttunen, Nov 15 2019: (Start)
a(n) = Sum_{d|n} A008683(n/d)*A323599(d).
a(n) = A003415(n) - A329039(n) = A230593(n) - n = A306369(n) - A000010(n).
a(n) = A276085(A329350(n)) = A048675(A329352(n)).
a(A276086(n)) = A329029(n), a(A328571(n)) = A329031(n).
(End)
a(n) = Sum_{d|n} A000010(d) * A001221(n/d). - Torlach Rush, Jan 21 2020
a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020
a(p^k) = p^(k-1) for p prime and k>=1. - Wesley Ivan Hurt, Jul 15 2025

A329029 a(n) = A069359(A276086(n)), where A276086 is the primorial base exp-function and A069359(n) = n * Sum_{p|n} 1/p.

Original entry on oeis.org

0, 1, 1, 5, 3, 15, 1, 7, 8, 31, 24, 93, 5, 35, 40, 155, 120, 465, 25, 175, 200, 775, 600, 2325, 125, 875, 1000, 3875, 3000, 11625, 1, 9, 10, 41, 30, 123, 12, 59, 71, 247, 213, 741, 60, 295, 355, 1235, 1065, 3705, 300, 1475, 1775, 6175, 5325, 18525, 1500, 7375, 8875, 30875, 26625, 92625, 7, 63, 70, 287, 210, 861, 84, 413, 497, 1729
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Comments

A380535 gives the indices n where a(n) is a multiple of A053669(n). This can be seen from the formula a(n) = A003557(A276086(n)) * A069359(A328571(n)). The left hand side of the product is a multiple of A053669(n) if and only if A276088(n) > 1, while the right hand side is never a multiple of A053669(n), as it is equal to A329031(n) = A003415(A007947(A276086(n))). - Antti Karttunen, Feb 11 2025

Crossrefs

Coincides with A327860 on the positions given by A276156.

Programs

  • PARI
    A329029(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p)); n = n\p; p = nextprime(1+p)); (s*m); };
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d));
    A329029(n) = A069359(A276086(n));

Formula

a(n) = A069359(A276086(n)).
a(n) = A328572(n) * A329031(n) = A003557(A276086(n)) * A069359(A328571(n)). - Antti Karttunen, Feb 11 2025

A329032 a(n) = A327860(A328842(n)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 8, 8, 10, 10, 10, 10, 55, 55, 75, 75, 75, 75, 350, 350, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 8, 8, 10, 10, 10, 10, 55, 55, 75, 75, 75, 75, 350, 350, 1, 1, 1, 1, 10, 10, 1, 1, 1, 1, 10, 10, 12, 12, 12, 12, 71, 71, 95, 95, 95, 95, 460, 460, 650, 650, 650, 650, 2825, 2825, 14, 14, 14, 14
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Crossrefs

Cf. A276156 (positions of zeros).

Programs

  • PARI
    A329032(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^(e-1)); s += ((e-1)/p)); n = n\p; p = nextprime(1+p)); (s*m); };

Formula

Showing 1-4 of 4 results.