cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A131751 Numbers that are both centered triangular and centered pentagonal.

Original entry on oeis.org

1, 31, 1891, 117181, 7263301, 450207451, 27905598631, 1729696907641, 107213302675081, 6645495068947351, 411913480972060651, 25531990325198812981, 1582571486681354344141, 98093900183918770523731, 6080239239916282418127151, 376876738974625591153359601
Offset: 1

Views

Author

Richard Choulet, Sep 20 2007

Keywords

Comments

We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.
The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).

Crossrefs

Programs

  • Maple
    A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2),x=0,n) ; end: seq(A131751(n),n=1..20) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    LinearRecurrence[{63,-63,1},{1,31,1891},20] (* Harvey P. Dale, Oct 01 2017 *)

Formula

a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).
G.f.: f(z) = a(1)*z+a(2)*z^2+... = z*(1-32*z+z^2)/((1-z)*(1-62*z+z^2)).
A005891 INTERSECT A005448. - R. J. Mathar, Oct 24 2007

Extensions

Corrected and extended by R. J. Mathar, Oct 24 2007

A145607 Numbers k such that (3*(2*k + 1)^2 + 2)/5 is a square.

Original entry on oeis.org

0, 4, 35, 279, 2200, 17324, 136395, 1073839, 8454320, 66560724, 524031475, 4125691079, 32481497160, 255726286204, 2013328792475, 15850904053599, 124793903636320, 982500325036964, 7735208696659395, 60899169248238199
Offset: 1

Views

Author

Richard Choulet, Oct 14 2008

Keywords

Comments

Square roots of (3*(2*k+1)^2+2)/5 are listed in A070997, therefore (3*(2*a(n) + 1)^2 + 2)/5 = A070997(n-1)^2.

Crossrefs

Cf. A001091 (first differences).

Formula

a(n+2) = 8*a(n+1) - a(n) + 3.
From R. J. Mathar, Oct 24 2008: (Start)
G.f.: x^2*(4 - x)/((1 - x)*(1 - 8*x + x^2)).
a(n) = (A057080(n-1)-1)/2. (End)

Extensions

a(4) corrected, extended, definition corrected by R. J. Mathar, Oct 24 2008
Offset changed by Bruno Berselli, Apr 06 2018

A273053 Numbers n such that 15*n^2 + 16 is a square.

Original entry on oeis.org

0, 4, 32, 252, 1984, 15620, 122976, 968188, 7622528, 60012036, 472473760, 3719778044, 29285750592, 230566226692, 1815244062944, 14291386276860, 112515846151936, 885835382938628, 6974167217357088, 54907502355918076, 432285851629987520, 3403379310683982084
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2016

Keywords

Crossrefs

Cf. A070997, similar sequences listed in A273052.

Programs

  • Magma
    [n: n in [0..2*10^7] |IsSquare(15*n^2+16)];
    
  • Maple
    a:=proc(n) option remember; if n=1 then 0 elif n=2 then 4 else 8*a(n-1) - a(n-2); fi; end: seq(a(n), n=1..30); # Wesley Ivan Hurt, May 14 2016
  • Mathematica
    LinearRecurrence[{8, -1}, {0, 4}, 30]
  • PARI
    concat(0, Vec(4*x^2/(1-8*x+x^2) + O(x^50))) \\ Colin Barker, May 14 2016

Formula

O.g.f.: 4*x^2/(1 - 8*x + x^2).
E.g.f.: 4*(1 + (4*sqrt(15)*sinh(sqrt(15)*x) - 15*cosh(sqrt(15)*x))*exp(4*x)/15). - Ilya Gutkovskiy, May 14 2016
a(n) = 8*a(n-1) - a(n-2) for n>2.
a(n) = -(2*((4-sqrt(15))^n*(4+sqrt(15))+(-4+sqrt(15))*(4+sqrt(15))^n))/sqrt(15). - Colin Barker, May 14 2016
a(n+2) - a(n+1) = 4*070997(n) for n>0. - Wesley Ivan Hurt, May 14 2016

A145542 Numerators in continued fraction expansion of sqrt(3/5).

Original entry on oeis.org

1, 3, 7, 24, 55, 189, 433, 1488, 3409, 11715, 26839, 92232, 211303, 726141, 1663585, 5716896, 13097377, 45009027, 103115431, 354355320, 811826071, 2789833533, 6391493137, 21964312944, 50320119025, 172924670019, 396169459063, 1361433047208, 3119035553479
Offset: 1

Views

Author

Gary W. Adamson, Oct 12 2008

Keywords

Comments

a(n)/A145543(n) tends to sqrt(3/5).
A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Related to the Lehmer sequence U_n(sqrt(R),Q) with parameters R = 6 and Q = -1. See A041023. - Peter Bala, Jun 06 2014

Examples

			[a(7), a(8)] = [433, 1488] X^4 * [1, 0] = [433, 1488].
a(5) = 55 = 2*a(4) + a(3) = 2*24 + 7.
G.f. = x + 3*x^2 + 7*x^3 + 24*x^4 + 55*x^5 + 189*x^6 + 433*x^7 + 1488*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[3/5], 30]] (* gives terms with 0 prepended *) (* Wesley Ivan Hurt, Jun 15 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (1 + 3*x - x^2) / (1 - 8*x^2 + x^4) + x * O(x^n), n))}; /* Michael Somos, Nov 14 2015 */

Formula

Numerators in continued fraction expansion of sqrt(3/5); i.e., of [1, 3, 2, 3, 2, 3, 2, 3, 2, ...].
[a(2*n - 1), a(2*n)] = X^n * [1,0], where X is the 2 X 2 matrix [1,2; 3,7].
Empirical G.f.: x*(1+3*x-x^2)/(1-8*x^2+x^4). - Colin Barker, Jan 04 2012
From Peter Bala, Jun 06 2014: (Start)
a(2*n + 1) = Product_{k=1..n} (6 + 4*cos^2(k*Pi/(2*n+1))).
a(2*n) = 3*Product_{k=1..n-1} (6 + 4*cos^2(k*Pi/(2*n))).
a(2*n + 1) = A070997(n); a(2*n) = 3*A001090(n). (End)

Extensions

More terms from Wesley Ivan Hurt, Jun 15 2014

A158197 Expansion of (1-x^2*c(x)^4)/(1-4*x*c(x)^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 4, 23, 140, 866, 5388, 33603, 209796, 1310510, 8188328, 51169094, 319779544, 1998527188, 12490460620, 78064190235, 487896926580, 3049340393430, 19058321475960, 119114304522450, 744463650984360, 4652895041524380
Offset: 0

Views

Author

Paul Barry, Mar 13 2009

Keywords

Comments

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 4^n. Hankel transform is A070997.

Crossrefs

Formula

Conjecture: +4*(n+1)*a(n) +(-81*n+23)*a(n-1) +10*(51*n-70)*a(n-2) +500*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Conjecture: +4*(n+1)^2*a(n) +(-41*n^2-58*n+23)*a(n-1) +50*(n+2)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 05 2015

A145608 Numbers a(n)=k such that (1/3)*(5*(2k+1)^2-2) is A057080(n)^2.

Original entry on oeis.org

0, 3, 27, 216, 1704, 13419, 105651, 831792, 6548688, 51557715, 405913035, 3195746568, 25160059512, 198084729531, 1559517776739, 12278057484384, 96664942098336, 761041479302307, 5991666892320123, 47172293659258680, 371386682381749320, 2923921165394735883, 23019982640776137747
Offset: 0

Views

Author

Richard Choulet, Oct 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==3,a[n]==8a[n-1]-a[n-2]+3},a,{n,30}] (* or *) LinearRecurrence[{9,-9,1},{0,3,27},30] (* Harvey P. Dale, May 06 2013 *)

Formula

a(n+2) = 8*a(n+1) - a(n) + 3.
a(n) = (A070997(n)-1)/2 = 3*A076765(n-1). - R. J. Mathar, Oct 16 2008
G.f.: -3*x / ( (x-1)*(x^2-8*x+1) ). - R. J. Mathar, Nov 27 2011
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=27. - Harvey P. Dale, May 06 2013

Extensions

Made definition and sequence consistent. Changed offset to 0. - R. J. Mathar, Oct 16 2008

A269028 a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - b(n - 2) with n>1 and b(0)=1, b(1)=1, is (1 - (k - 1)*x)/(1 - k*x +x^2). This recurrence gives the closed form b(n) = (2^( -n - 1)*((k - 2)*(k - sqrt(k^2 - 4))^n + sqrt(k^2 - 4)*(k - sqrt(k^2 - 4))^n - (k - 2)*(sqrt(k^2 - 4) + k)^n + sqrt(k^2 - 4)*(sqrt(k^2 - 4) + k)^n))/sqrt(k^2 - 4).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
  • Mathematica
    Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
    Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
    LinearRecurrence[{40, -1}, {1, 1}, 17]

Formula

G.f.: (1 - 39*x)/(1 - 40*x + x^2).
a(n) = cosh(n*log(20 + sqrt(399))) - sqrt(19/21)*sinh(n*log(20 + sqrt(399))).
a(n) = (2^(-n - 2)*(38*(40 - 2*sqrt(399))^n + 2*sqrt(399)*(40 - 2*sqrt(399))^n - 38*(40 + 2*sqrt(399))^n + 2*sqrt(399)*(40 + 2*sqrt(399))^n))/sqrt(399).
Sum_{n>=0} 1/a(n) = 2.0262989201139499769986...
Previous Showing 21-27 of 27 results.