A131751
Numbers that are both centered triangular and centered pentagonal.
Original entry on oeis.org
1, 31, 1891, 117181, 7263301, 450207451, 27905598631, 1729696907641, 107213302675081, 6645495068947351, 411913480972060651, 25531990325198812981, 1582571486681354344141, 98093900183918770523731, 6080239239916282418127151, 376876738974625591153359601
Offset: 1
-
A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2),x=0,n) ; end: seq(A131751(n),n=1..20) ; # R. J. Mathar, Oct 24 2007
-
LinearRecurrence[{63,-63,1},{1,31,1891},20] (* Harvey P. Dale, Oct 01 2017 *)
A145607
Numbers k such that (3*(2*k + 1)^2 + 2)/5 is a square.
Original entry on oeis.org
0, 4, 35, 279, 2200, 17324, 136395, 1073839, 8454320, 66560724, 524031475, 4125691079, 32481497160, 255726286204, 2013328792475, 15850904053599, 124793903636320, 982500325036964, 7735208696659395, 60899169248238199
Offset: 1
a(4) corrected, extended, definition corrected by
R. J. Mathar, Oct 24 2008
A273053
Numbers n such that 15*n^2 + 16 is a square.
Original entry on oeis.org
0, 4, 32, 252, 1984, 15620, 122976, 968188, 7622528, 60012036, 472473760, 3719778044, 29285750592, 230566226692, 1815244062944, 14291386276860, 112515846151936, 885835382938628, 6974167217357088, 54907502355918076, 432285851629987520, 3403379310683982084
Offset: 1
-
[n: n in [0..2*10^7] |IsSquare(15*n^2+16)];
-
a:=proc(n) option remember; if n=1 then 0 elif n=2 then 4 else 8*a(n-1) - a(n-2); fi; end: seq(a(n), n=1..30); # Wesley Ivan Hurt, May 14 2016
-
LinearRecurrence[{8, -1}, {0, 4}, 30]
-
concat(0, Vec(4*x^2/(1-8*x+x^2) + O(x^50))) \\ Colin Barker, May 14 2016
A145542
Numerators in continued fraction expansion of sqrt(3/5).
Original entry on oeis.org
1, 3, 7, 24, 55, 189, 433, 1488, 3409, 11715, 26839, 92232, 211303, 726141, 1663585, 5716896, 13097377, 45009027, 103115431, 354355320, 811826071, 2789833533, 6391493137, 21964312944, 50320119025, 172924670019, 396169459063, 1361433047208, 3119035553479
Offset: 1
[a(7), a(8)] = [433, 1488] X^4 * [1, 0] = [433, 1488].
a(5) = 55 = 2*a(4) + a(3) = 2*24 + 7.
G.f. = x + 3*x^2 + 7*x^3 + 24*x^4 + 55*x^5 + 189*x^6 + 433*x^7 + 1488*x^8 + ...
-
Numerator[Convergents[Sqrt[3/5], 30]] (* gives terms with 0 prepended *) (* Wesley Ivan Hurt, Jun 15 2014 *)
-
{a(n) = if( n<1, 0, polcoeff( x * (1 + 3*x - x^2) / (1 - 8*x^2 + x^4) + x * O(x^n), n))}; /* Michael Somos, Nov 14 2015 */
A158197
Expansion of (1-x^2*c(x)^4)/(1-4*x*c(x)^2), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 4, 23, 140, 866, 5388, 33603, 209796, 1310510, 8188328, 51169094, 319779544, 1998527188, 12490460620, 78064190235, 487896926580, 3049340393430, 19058321475960, 119114304522450, 744463650984360, 4652895041524380
Offset: 0
A145608
Numbers a(n)=k such that (1/3)*(5*(2k+1)^2-2) is A057080(n)^2.
Original entry on oeis.org
0, 3, 27, 216, 1704, 13419, 105651, 831792, 6548688, 51557715, 405913035, 3195746568, 25160059512, 198084729531, 1559517776739, 12278057484384, 96664942098336, 761041479302307, 5991666892320123, 47172293659258680, 371386682381749320, 2923921165394735883, 23019982640776137747
Offset: 0
-
RecurrenceTable[{a[0]==0,a[1]==3,a[n]==8a[n-1]-a[n-2]+3},a,{n,30}] (* or *) LinearRecurrence[{9,-9,1},{0,3,27},30] (* Harvey P. Dale, May 06 2013 *)
Made definition and sequence consistent. Changed offset to 0. -
R. J. Mathar, Oct 16 2008
A269028
a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0
Cf.
A001519,
A001835,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A160682,
A007805,
A075839,
A157014,
A159664,
A159668,
A157877,
A238379,
A097315.
-
[n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
-
Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
LinearRecurrence[{40, -1}, {1, 1}, 17]
Comments