cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 155 results. Next

A323024 Numbers with exactly three distinct exponents in their prime factorization, or three distinct parts in their prime signature.

Original entry on oeis.org

360, 504, 540, 600, 720, 756, 792, 936, 1008, 1176, 1188, 1200, 1224, 1350, 1368, 1400, 1404, 1440, 1500, 1584, 1620, 1656, 1836, 1872, 1960, 2016, 2052, 2088, 2160, 2200, 2232, 2250, 2268, 2352, 2400, 2448, 2484, 2520, 2600, 2646, 2664, 2736, 2800, 2880, 2904
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Positions of 3's in A071625.
Numbers k such that A001221(A181819(k)) = 3.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} r(n)/((n-1)*psi(n)) = 0.030575..., where psi is the Dedekind psi function (A001615), and r(n) = Sum_{d|n, 1Amiram Eldar, Oct 18 2020

Examples

			1500 = 2^2 * 3^1 * 5^3 has three distinct exponents {1, 2, 3}, so belongs to the sequence.
52500 = 2^2 * 3^1 * 5^4 * 7^1 has three distinct exponents {1, 2, 4}, so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[1000],tom[#]==3&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 3 \\ David A. Corneth, Jan 02 2019

A327526 Maximum uniform divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 6, 13, 14, 15, 16, 17, 9, 19, 10, 21, 22, 23, 8, 25, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 16, 49, 25, 51, 26, 53, 27, 55, 14, 57, 58, 59, 30, 61, 62, 21, 64, 65, 66, 67, 34
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774. The number of uniform divisors of n is A327527(n).

Examples

			The uniform divisors of 40 are {1, 2, 4, 5, 8, 10}, so a(40) = 10.
		

Crossrefs

See link for additional cross-references.

Programs

Formula

a(n) = n / A327528(n). - Amiram Eldar, Dec 19 2023

A367586 Numbers whose prime indices have a multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) that is all ones {1,1,...}. Positions of powers of 2 in A367580.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 30, 32, 34, 36, 38, 42, 46, 58, 62, 64, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 128, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.

Examples

			We have MMK({1,1,2,2}) = {1,1} so 36 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   14: {1,4}
   16: {1,1,1,1}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   38: {1,8}
   42: {1,2,4}
		

Crossrefs

Contains all prime powers A000961 and squarefree numbers A005117.
Partitions of this type (uniform containing 1) are counted by A097986.
Positions of all one rows {1,1,...} in A367579.
Positions of powers of 2 in A367580.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
A367581 gives multiset multiplicity kernel sum, max A367583, min A055396.

Programs

  • Maple
    isA := proc(n) z := padic:-ordp(n, 2); andseq(z=p[2], p in ifactors(n)[2]) end:
    select(isA, [seq(1..222)]);  # Peter Luschny, Jun 10 2025
  • Mathematica
    Select[Range[100], #==1||EvenQ[#]&&SameQ@@Last/@FactorInteger[#]&]

Formula

Consists of 1 and all even terms of A072774 (powers of squarefree numbers).

A380958 Number of prime factors of n (with multiplicity) minus sum of distinct prime exponents of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2025

Keywords

Examples

			The prime factors of 2100 are {2,2,3,5,5,7}, with distinct multiplicities {1,2}, so a(2100) = 6 - (1+2) = 3.
		

Crossrefs

Positions of 0's are A130091, complement A130092.
The RHS (sum of distinct prime exponents) is A136565.
For prime factors instead of exponents see A280292, firsts A280286, sorted A381075.
For prime indices instead of exponents see A380955, firsts A380956, sorted A380957.
Position of first appearance of n is A380989(n).
A000040 lists the primes, differences A001223.
A005117 lists squarefree numbers, complement A013929.
A005361 gives product of prime signature.
A055396 gives least prime index, greatest A061395.
A056239 (reverse A296150) adds up prime indices, row sums of A112798, counted by A001222.
A124010 lists prime exponents (signature); see A001222, A001221, A051903, A051904.

Programs

  • Mathematica
    Table[PrimeOmega[n]-Total[Union[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]

Formula

a(n) = A001222(n) - A136565(n).

A304687 Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Examples

			The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n.
         a(60) = 2: {1,1,2} -> {1,2} -> {1,1}.
        a(360) = 3: {1,2,3} -> {1,1,1}.
       a(1260) = 4: {1,1,2,2} -> {2,2}.
a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) map(i-> i[2], ifactors(n)[2]);
          while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od;
          add(i, i=%)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[If[n==1,0,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],!SameQ@@#&]//Total],{n,360}]

A323025 Numbers with exactly four distinct exponents in their prime factorization, or four distinct parts in their prime signature.

Original entry on oeis.org

75600, 105840, 113400, 118800, 126000, 140400, 151200, 158760, 178200, 183600, 198000, 205200, 210600, 211680, 232848, 234000, 237600, 246960, 248400, 252000, 261360, 275184, 275400, 280800, 283500, 294000, 302400, 306000, 307800, 313200, 315000, 334800
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Positions of 4's in A071625.
Numbers k such that A001221(A181819(k)) = 4.
Is a(n) ~ c * n for some c? - David A. Corneth, Jan 09 2019
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} r(n)/((n-1)*psi(n)) = 0.00035750... (corresponding to c = 2797.1... in the question above, whose answer is affirmative), where psi is the Dedekind psi function (A001615), and r(n) = Sum_{d_1|n, 1Amiram Eldar, Oct 18 2020

Examples

			126000 = 2^4 * 3^2 * 5^3 * 7^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
831600 = 2^4 * 3^3 * 5^2 * 7^1 * 11^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[100000],tom[#]==4&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 4 \\ David A. Corneth, Jan 09 2019

A327486 Product of Omegas of positive integers from 2 to n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 144, 144, 288, 576, 2304, 2304, 6912, 6912, 20736, 41472, 82944, 82944, 331776, 663552, 1327104, 3981312, 11943936, 11943936, 35831808, 35831808, 179159040, 358318080, 716636160, 1433272320, 5733089280, 5733089280, 11466178560
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2019

Keywords

Comments

Omega(n) (A001222) is the number of prime factors of n, counted with multiplicity.
Also the number of ways to choose a prime factor, counting multiplicity, of each positive integer from 2 to n.

Examples

			We have a(8) = 1 * 1 * 2 * 1 * 2 * 1 * 3 = 12.
		

Crossrefs

Partial products of A001222.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          numtheory[bigomega](n)*a(n-1))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 29 2019
  • Mathematica
    Table[Product[PrimeOmega[k],{k,2,n}],{n,30}]
  • PARI
    a(n) = prod(k=2, n, bigomega(k)); \\ Michel Marcus, Sep 29 2019

Formula

a(n > 1) = a(n - 1) * A001222(n).

A331592 a(n) is the smaller of the number of terms in the factorizations of n into (1) powers of distinct primes and (2) powers of squarefree numbers with distinct exponents that are powers of 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

See A329332 for a description of the relationship between the two factorizations. From this relationship we get the formula a(n) = min(A001221(n), A001221(A225546(n))).
The result depends only on the prime signature of n.
k first appears at A191555(k).

Examples

			The factorization of 6 into powers of distinct primes is 6 = 2^1 * 3^1 = 2 * 3, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) is min(2,1) = 1.
The factorization of 40 into powers of distinct primes is 40 = 2^3 * 5^1 = 8 * 5, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) is min(2,2) = 2.
		

Crossrefs

Sequences with related definitions: A331308, A331591, A331593.
A003961, A225546 are used to express relationship between terms of this sequence.
Differs from = A071625 for the first time at n=216, where a(216) = 2, while A071625(216) = 1.

Programs

Formula

a(n) = min(A001221(n), A331591(n)) = min(A001221(n), A001221(A293442(n))).
a(A225546(n)) = a(n).
a(A003961(n)) = a(n).
a(n^2) = a(n).

A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 36, 120, 144, 180 (ones not shown):
  {2,18}    {3,12,24}    {2,18,72}       {2,18}
  {3,12}    {5,20,40}    {3,9,18,72}     {3,12}
  {2,4,12}  {2,4,8,24}   {3,12,24,48}    {5,20}
  {3,9,18}  {2,4,8,40}   {3,12,24,72}    {5,45}
            {2,4,12,24}  {2,4,8,16,48}   {2,4,12}
            {2,4,20,40}  {2,4,8,24,48}   {2,4,20}
                         {2,4,8,24,72}   {3,9,18}
                         {2,4,12,24,48}  {3,9,45}
                         {2,4,12,24,72}
		

Crossrefs

A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]];
    Table[Length[fasmax[strses[n]]],{n,100}]

A367587 Least element in row n of A367858 (multiset multiplicity cokernel).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 1, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 1, 7, 1, 16, 1, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 2, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2023

Keywords

Comments

We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.

Crossrefs

Indices of first appearances are A008578.
Depends only on rootless base A052410, see A007916.
For kernel instead of cokernel we have A055396.
For maximum instead of minimum element we have A061395.
The opposite version is A367583.
Row-minima of A367858.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367579 lists MMK, rank A367580, sum A367581, max A367583, min A055396.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&],{i,mts}]]];
    Table[If[n==1,0,Min@@mmc[prix[n]]],{n,100}]

Formula

a(n) = A055396(A367859(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A061395(n).
Previous Showing 71-80 of 155 results. Next