cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 102 results. Next

A046344 Sum of the prime factors of the odd composite numbers (counted with multiplicity).

Original entry on oeis.org

6, 8, 10, 10, 9, 14, 12, 16, 11, 14, 20, 16, 22, 13, 18, 26, 13, 18, 12, 22, 32, 20, 34, 24, 17, 15, 40, 28, 19, 24, 22, 44, 15, 46, 26, 14, 50, 24, 34, 17, 23, 36, 56, 30, 19, 26, 25, 17, 62, 64, 42, 28, 16, 21, 70, 36, 46, 29, 30, 74, 48, 38, 76, 30, 16, 21, 52, 82, 15, 19
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			a(54)=21 because 195 = 3 * 5 * 13 and 21 = 3 + 5 + 13.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[!PrimeQ[n],AppendTo[t,Total[Times@@@FactorInteger[n]]]],{n,9,245,2}]; t (* Jayanta Basu, Jun 04 2013 *)
    spf[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; spf/@ Select[Range[9,501,2],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 29 2021 *)

A073763 Least number of unrelated set belonging to these numbers is odd.

Original entry on oeis.org

24, 48, 96, 120, 168, 192, 240, 264, 312, 336, 384, 408, 456, 480, 528, 552, 600, 624, 672, 696, 744, 768, 816, 840, 888, 912, 960, 984, 1032, 1056, 1104, 1128, 1176, 1200, 1248, 1272, 1320, 1344, 1392, 1416, 1464, 1488, 1536, 1560, 1608, 1632, 1680, 1704
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Examples

			n=24: UnrelatedSet[24]={9, 10, 14, 15, 16, 18, 20, 21, 22}, Min=9, so 24 is here. In cases of all solutions (<50000) the odd number was always 9. This is not an accident. Primes are either divisors or primes to n. Thus a term here should be a composite odd number from A071904, whose first entry is 9; so next candidates are 15, 21, 25, 27... While 15 and 21 not [yet] found, prime powers 25 and 27 did arise.
Least odd unrelated number to 55440 is 25 and smallest unrelated (i.e. neither divisor, nor in RRS) to 3603600 is 27.
Question: can be a smallest odd unrelated number be other than a true power of odd prime?
Answer: no.  Proof: Suppose A073758(n) = k is odd and not a prime power.  Let k = g*u where g = gcd(n,k) > 1.  Since k does not divide n, u > 1.  Since 2*g < k is not unrelated to n, it must divide n, so n is even.  Let p be a prime factor of u.  Since 2*p is not unrelated to n, p must divide n.  But then p^d < k is unrelated to n, where p^d is the highest power of p dividing k. - _Robert Israel_, Sep 11 2014
		

Crossrefs

Programs

  • Maple
    A073758:= proc(n) local k;
      for k from 2 to n-2 do
        if igcd(k,n) > 1 and n mod k > 1 then return k fi
      od;
      0
    end proc:
    select(t -> A073758(t)::odd, [$1..1000]); # Robert Israel, Sep 11 2014
  • Mathematica
    tn[x_] := Table[w, {w, 1, x}] di[x_] := Divisors[x] rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]] nd[x_] := Complement[tn[x], di[x]] rs[x_] := Union[rrs[x], di[x]] urs[x_] := Complement[tn[x], rs[x]] Do[s=Min[urs[n]]; If[OddQ[s], Print[{n, s}]], {n, 1, 10000}]
    unQ[n_] := OddQ[Min[Complement[r = Range[n - 1], Select[r, Divisible[n, #] || GCD[n, #] == 1 &]]]]; Select[Range[1710], unQ] (* Jayanta Basu, Jul 09 2013 *)

Formula

Solutions to Mod[A073758(x), 2]=1.
Conjecture: a(n) = 36*n - 18 - 6*(-1)^n = 24 * A001651(n). - Ralf Stephan, Oct 19 2013
The conjecture is false, first counterexample being a(1541) = 55440. - Robert Israel, Sep 11 2014

A129146 a(n) = n-th odd prime minus n-th odd composite number.

Original entry on oeis.org

-6, -10, -14, -14, -14, -16, -16, -16, -16, -18, -14, -14, -14, -16, -12, -10, -14, -10, -10, -12, -8, -8, -4, 2, 2, -2, -4, -6, -4, 8, 10, 14, 14, 20, 18, 22, 22, 24, 28, 32, 28, 36, 34, 36, 34, 42, 52, 52, 52, 50, 54, 54, 62, 62, 62, 66, 66, 70, 72, 70, 78, 90, 92, 92, 92, 100, 102, 110, 106, 108, 112, 118, 120, 124, 124, 128
Offset: 1

Views

Author

Zak Seidov, Apr 01 2007

Keywords

Comments

For small n's, a(n) is negative, while for large n's, a(n) is positive.

Crossrefs

Programs

  • Python
    from sympy import primepi, prime
    def A129146(n):
        if n == 1: return -6
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return prime(n+1)-m # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A065091(n) - A071904(n).

A160522 The n-th odd composite number minus the n-th even composite number.

Original entry on oeis.org

5, 9, 13, 15, 15, 19, 19, 21, 25, 27, 27, 29, 29, 33, 33, 35, 39, 39, 41, 43, 43, 45, 45, 45, 47, 51, 55, 57, 57, 57, 57, 57, 57, 59, 61, 61, 65, 65, 65, 65, 69, 69, 71, 71, 73, 75, 75, 77, 77, 81, 81, 81, 81, 85, 89, 89, 89, 89, 89, 91, 91, 91, 91, 91, 93, 97, 99, 99, 103, 103
Offset: 1

Views

Author

Kyle Stern, May 16 2009

Keywords

Crossrefs

Programs

  • MATLAB
    composite function [a] = A160522(k) j = 1; n = 1; even = 4; while j < k n = n + 1; if isprime(n) == 1 else if mod(n,2) == 0 else a(j,1) = n - even; even = even + 2; j = j + 1; end end end
    
  • Mathematica
    Last[t = GatherBy[Select[Range[4, 245], ! PrimeQ[#] &], OddQ]] - Take[First[t], Length[Last[t]]] (* Jayanta Basu, Aug 11 2013 *)
  • PARI
    m=70; v=vector(m); k=4; n=0; while(n0&&!isprime(k), n++; v[n]=k-2*(n+1)); k++); v \\ Klaus Brockhaus, May 22 2009
    
  • Python
    from sympy import primepi
    def A160522(n):
        if n == 1: return 5
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return m-(n+1<<1) # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A071904(n) - A005843(n+1).

Extensions

Extended and formula edited by Klaus Brockhaus, May 22 2009

A226025 Odd composite numbers that are not squares of primes.

Original entry on oeis.org

15, 21, 27, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 07 2013

Keywords

Comments

Numbers that are in A071904 (odd composite numbers) but not in A001248 (squares of primes).
First differs from its subsequence A082686 in a(16)=81 which is not in A082686. More precisely, A226025 \ A082686 = A062532 \ {1} = A014076^2 \ {1}. - M. F. Hasler, Oct 20 2013
Odd numbers that are greater than the square of their least prime factor - Odimar Fabeny, Sep 08 2014

Crossrefs

Subsequence of A071904. Cf. A226603.

Programs

  • Haskell
    a226025 n = a226025_list !! (n-1)
    a226025_list = filter ((/= 2) . a100995) a071904_list
    -- Reinhard Zumkeller, Jun 15 2013
    
  • Magma
    [n: n in [3..217 by 2] | not IsPrime(n) and not IsSquare(n) or IsSquare(n) and not IsPrime(Floor(n^(1/2)))];
    
  • Maple
    select(n -> not(isprime(n)) and (not(issqr(n)) or not(isprime(sqrt(n)))), [seq(2*i+1,i=1..1000)]); # Robert Israel, Sep 08 2014
  • Mathematica
    Select[Range[3, 217, 2], ! PrimeQ[#] && ! PrimeQ@Sqrt[#] &]
    r = Prime@Range[2, 6]^2; Complement[Select[Range[3, Last[r] - 2, 2], ! PrimeQ[#] &], Most[r]]
    Select[Range[3,251,2],NoneTrue[{#,Sqrt[#]},PrimeQ]&] (* Harvey P. Dale, Sep 06 2021 *)
  • PARI
    is_A226025(n)={bittest(n,0)&&!isprime(n,0)&&!(issquare(n)&&isprime(sqrtint(n)))&&n>1} \\ - M. F. Hasler, Oct 20 2013

Formula

A226025 = { odd x>1 | A100995(x) = 0 or A100995(x) > 2 }. - M. F. Hasler, Oct 20 2013

A262044 Partial sum of the first n odd composite numbers.

Original entry on oeis.org

9, 24, 45, 70, 97, 130, 165, 204, 249, 298, 349, 404, 461, 524, 589, 658, 733, 810, 891, 976, 1063, 1154, 1247, 1342, 1441, 1546, 1657, 1772, 1889, 2008, 2129, 2252, 2377, 2506, 2639, 2774, 2915, 3058, 3203, 3350, 3503, 3658, 3817, 3978, 4143, 4312
Offset: 1

Views

Author

R. J. Mathar, Sep 09 2015

Keywords

Comments

Intersection with A002113 gives A058850.

Crossrefs

Cf. A058850.

Programs

  • Maple
    A262044 := proc(n)
        add(A071904(i),i=1..n) ;
    end proc:
  • Mathematica
    Accumulate[Select[Range[9,191,2],CompositeQ]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 09 2017 *)

Formula

a(n) = Sum_{i=1..n} A071904(i).

A266419 Odd nonludic numbers.

Original entry on oeis.org

9, 15, 19, 21, 27, 31, 33, 35, 39, 45, 49, 51, 55, 57, 59, 63, 65, 69, 73, 75, 79, 81, 85, 87, 93, 95, 99, 101, 103, 105, 109, 111, 113, 117, 123, 125, 129, 133, 135, 137, 139, 141, 145, 147, 151, 153, 155, 159, 163, 165, 167, 169, 171, 177, 183, 185, 187, 189, 191, 195, 197, 199, 201, 203, 205, 207, 213, 215
Offset: 1

Views

Author

Antti Karttunen, Jan 28 2016

Keywords

Crossrefs

Intersection of A005408 and A192607.
Cf. also A071904, A266420.

Formula

Other identities. For all n >= 1:
a(n) = 1 + 2*A266410(n).

A322568 Integers k such that the least prime factor of 2^k - 1 is not in A122094.

Original entry on oeis.org

169, 221, 323, 611, 779, 793, 923, 1121, 1159, 1271, 1273, 1349, 1513, 1717, 1829, 1919, 2033, 2077, 2197, 2201, 2413, 2533, 2603, 2759, 2873, 2951, 3097, 3131, 3173, 3193, 3211, 3281, 3379, 3599, 3721, 3757, 3791, 3937, 3953, 4043, 4199, 4223, 4309, 4331
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 29 2019

Keywords

Comments

Clearly, the terms are odd and composite (A071904).
The first term which is itself of form 2^j - 1 is 34359738367 = 2^35 - 1. The least prime factor of 2^34359738367 - 1 is 136463, and the multiplicative order of 2 modulo 136463 is 2201 = 31*71. In A309130, it is asked if a member of A322568 can be of form 2^p - 1 with p prime.

Examples

			169 is included because the least prime factor of 2^169-1 is 4057, and the multiplicative order of 2 modulo 4057 is 169 which is not prime. The divisor 4057 is less than the "algebraic" divisor 2^13-1 = 8192 (Mersenne prime).
4199 (= 13*17*19) is included because the least prime factor of 2^4199-1 is 647, and the multiplicative order of 2 modulo 647 is 323 (= 17*19) which is not prime. The divisor 647 is less than the smallest "algebraic" divisor which is 2^13-1 = 8192 (Mersenne prime).
289 is NOT included; its least prime factor is 2^17 - 1.
1073 (= 29*37) is NOT included; its least prime factor is 223, but 223 is a divisor of one of the "algebraic" factors, namely 223 is a divisor of composite Mersenne number 2^37 - 1.
		

Crossrefs

Programs

  • PARI
    for(k=2,+oo,isprime(k)&&next();forprime(p=3,,if(Mod(2,p)^k-1==0,!isprime(znorder(Mod(2,p)))&&print1(k,", ");next(2))))

A325573 Odd numbers n that have divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

9, 21, 33, 35, 45, 49, 65, 75, 93, 105, 129, 133, 135, 153, 155, 161, 165, 189, 195, 217, 225, 259, 273, 279, 297, 309, 315, 341, 345, 381, 385, 403, 441, 465, 513, 525, 527, 561, 567, 585, 589, 597, 611, 621, 635, 645, 651, 681, 693, 705, 713, 729, 765, 775, 793, 819, 837, 889, 899, 945, 961, 1025, 1029, 1035, 1057, 1065
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Crossrefs

Subsequence of A071904 and of A325572.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    isA325573(n) = ((n%2)&&fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(d
    				

A339519 Odd composite integers m such that A087130(2*m-J(m,29)) == 5*J(m,29) (mod m), where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 27, 39, 45, 91, 117, 121, 135, 143, 195, 287, 351, 507, 585, 741, 1521, 1547, 1573, 1755, 1935, 2015, 2067, 2535, 2601, 3157, 3227, 3445, 3505, 3519, 3731, 4563, 4879, 4921, 6201, 6273, 6543, 6591, 6721, 7605, 7803, 8099, 10335, 10377, 10403, 10515
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=5, D=29 and k=2, while V(m) recovers A087130(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A087130, A071904, A339127 (a=5, b=-1, k=1).
Cf. A339517 (a=1, b=-1), A339518 (a=3, b=-1), A339520 (a=7, b=-1).

Programs

  • Mathematica
    Select[Range[3, 20000, 2],  CoprimeQ[#, 29] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 29], 5] - 5*JacobiSymbol[#, 29], #] &]
Previous Showing 51-60 of 102 results. Next