cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A008579 Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.

Original entry on oeis.org

1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
Offset: 0

Views

Author

Keywords

Comments

Interesting because coefficients never become monotonic.
Also the coordination sequence for a planar net made of densely packed circles. - Yuriy Sibirmovsky, Sep 11 2016
Described by J.-G. Eon (2014) as the coordination sequence of the Kagome net. - N. J. A. Sloane, Jan 03 2018

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors).

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Programs

  • Haskell
    a008579 0 = 1
    a008579 1 = 4
    a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n',m) = divMod n 2
    a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1,4*x+3]) [1..]
    -- Reinhard Zumkeller, Nov 12 2012
  • Maple
    f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi;
  • Mathematica
    a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 18 2011, after Maple *)
    CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,4,8,14,18,22},50] (* Harvey P. Dale, Sep 05 2018 *)

Formula

G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4)/(1 - x^2)^2.
From R. J. Mathar, Nov 26 2014: (Start)
a(2n) = A017365(n), n > 0.
a(2n+1) = A017137(n), n > 0. (End)
From Stefano Spezia, Aug 07 2022: (Start)
a(n) = (9 + (-1)^n)*n/2 - 2*(-1)^n for n > 1.
E.g.f.: 3 - 2*x + (4*x - 2)*cosh(x) + (5*x + 2)*sinh(x). (End)

A250122 Coordination sequence for planar net 3.12.12.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0

Views

Author

Darrah Chavey, Nov 23 2014

Keywords

Comments

Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Cf. A298805.

Programs

  • Mathematica
    Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)

Formula

From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023

Extensions

a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A296368 Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.

Original entry on oeis.org

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0

Views

Author

N. J. A. Sloane, Dec 21 2017

Keywords

Comments

There are two types of point in this tiling. This is the coordination sequence with respect to a point of degree 3.
The coordination sequence with respect to a point of degree 4 (see second illustration) is simply 1, 4, 8, 12, 16, 20, ..., the same as the coordination sequence for the 4.4.4.4 square grid (A008574). See the CGS-NJAS link for the proof.

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
  • Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]

Crossrefs

For partial sums see A296909.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

The simplest formula is: a(0)=1, a(1)=2, a(2)=8, and thereafter a(n) = 4n if n is odd, 4n - 1 if n == 0 (mod 4), and 4n+1 if n == 2 (mod 4). (See the CGS-NJAS link for proof. - N. J. A. Sloane, May 10 2018)
a(n + 4) = a(n) + 16 for any n >= 3. - Rémy Sigrist, Dec 23 2017 (See the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 30 2017)
G.f.: -(x^6-x^5-2*x^4-4*x^2-x-1)/((x^2+1)*(x-1)^2).
From Colin Barker, Dec 23 2017: (Start)
a(n) = (8*n - (-i)^n - i^n) / 2 for n>2, where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>6.
(End)

Extensions

Terms a(8)-a(20) and RCSR link from Davide M. Proserpio, Dec 22 2017
More terms from Rémy Sigrist, Dec 23 2017

A298036 Coordination sequence of Dual(4.6.12) tiling with respect to a 12-valent node.

Original entry on oeis.org

1, 12, 12, 36, 24, 60, 36, 84, 48, 108, 60, 132, 72, 156, 84, 180, 96, 204, 108, 228, 120, 252, 132, 276, 144, 300, 156, 324, 168, 348, 180, 372, 192, 396, 204, 420, 216, 444, 228, 468, 240, 492, 252, 516, 264, 540, 276, 564, 288, 588, 300
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

Conjecture: For n>0, a(n)=6n if n even, otherwise 12n.
The conjecture can easily be shown to be true: The vertices at distance 2k consist of 3k 12-valent and 3k 4-alent vertices, and the vertices at distance 2k+1 consist of 6(k+1) 6-valent and 6(k+1) 4-valent vertices. - Charlie Neder, Apr 22 2019

Crossrefs

Cf. A072154, A298037 (partial sums), A298038 (hexavalent node), A298040 (tetravalent node).
Cf. A109043 (a(n)/6), A026741 (a(n)/12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {1, 12, 12, 36, 24}, 100] (* Paolo Xausa, Jul 19 2024 *)

Formula

From Charlie Neder, Apr 22 2019: (Start)
a(n) = 6 * n * (1 + n mod 2), n > 0.
G.f.: (1 + 12*x + 10*x^2 + 12*x^3 + x^4)/(1 - x^2)^2. (End)

Extensions

a(7)-a(50) from Charlie Neder, Apr 22 2019

A298038 Coordination sequence of Dual(4.6.12) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 24, 18, 48, 30, 72, 42, 96, 54, 120, 66, 144, 78, 168, 90, 192, 102, 216, 114, 240, 126, 264, 138, 288, 150, 312, 162, 336, 174, 360, 186, 384, 198, 408, 210, 432, 222, 456, 234, 480, 246, 504, 258, 528, 270, 552, 282, 576, 294, 600, 306, 624, 318, 648
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

Conjecture: For n > 0, a(n)=12n if n even, otherwise 6n.
From Keagan Boyce, May 18 2024: (Start)
It appears that
a(n) = (3*n)*(3+(-1)^n) for n > 0,
which would imply that for all even n > 0,
a(n) = (3*n)*(3+(1)) = (3*n)*(4) = 12*n,
and for all odd n > 0,
a(n) = (3*n)*(3+(-1)) = (3*n)*(2) = 6*n. (End)

Crossrefs

Cf. A072154, A298039 (partial sums), A298036 (12-valent node), A298040 (tetravalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Formula

Conjectures from Colin Barker, Apr 03 2020: (Start)
G.f.: (1 + 6*x + 22*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n > 4. (End)

Extensions

Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020

A298040 Coordination sequence of Dual(4.6.12) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 20, 24, 40, 40, 60, 56, 80, 72, 100, 88, 120, 104, 140, 120, 160, 136, 180, 152, 200, 168, 220, 184, 240, 200, 260, 216, 280, 232, 300, 248, 320, 264, 340, 280, 360, 296, 380, 312, 400, 328, 420, 344, 440, 360, 460, 376, 480, 392, 500, 408, 520, 424, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Crossrefs

Cf. A072154, A298041 (partial sums), A298036 (12-valent node), A298038 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,4,20,24,40,40},60] (* Harvey P. Dale, Apr 06 2022 *)

Formula

Conjecture: For n>0, a(n)=10n if n even, otherwise 8n.
Conjectures from Colin Barker, Apr 01 2020: (Start)
G.f.: (1 + 4*x + 18*x^2 + 16*x^3 + x^4 - 4*x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = (9 + (-1)^n)*n for n>1.
a(n) = 2*a(n-2) - a(n-4) for n>5.
(End)

Extensions

Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020

A072149 Coordination sequence for AlPO_4-11 structure with respect to node (X) where decagon and two hexagons meet.

Original entry on oeis.org

1, 3, 6, 8, 10, 13, 16, 19, 20, 22, 28, 31, 30, 33, 38, 40, 42, 43, 46, 53, 54, 52, 58, 63, 62, 65, 68, 70, 76, 77, 76, 83, 86, 84, 90, 93, 92, 99, 102, 100, 106, 109, 108, 115, 116, 114, 124, 127, 122, 129, 134, 132, 138, 139, 138, 149, 150, 144, 154, 159
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There are three types of nodes in this structure.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.

Crossrefs

Formula

Empirical: G.f. 1 +x*(3 +6*x +11*x^2 +13*x^3 +15*x^4 +15*x^5 +16*x^6 +15*x^7 +15*x^8 +13*x^9 +11*x^10 +6*x^11 +3*x^12) / ( (1+x^2)*(x^6+x^3+1)*(x-1)^2*(1+x+x^2)^2 ) with a(n)= -a(n-2) +a(n-3) +a(n-5) +a(n-9) +a(n-11) -a(n-12) -a(n-14). - R. J. Mathar, Sep 30 2011

Extensions

More terms from R. J. Mathar, Mar 29 2007
Extended by Joseph Myers, Sep 29 2011

A072150 Coordination sequence for AlPO_4-11 structure with respect to node (Y) where decagon, hexagon and square meet and is adjacent to node of type (X).

Original entry on oeis.org

1, 3, 5, 8, 10, 13, 17, 18, 20, 25, 26, 28, 33, 33, 36, 42, 41, 43, 50, 49, 51, 58, 56, 59, 67, 64, 66, 75, 72, 74, 83, 79, 82, 92, 87, 89, 100, 95, 97, 108, 102, 105, 117, 110, 112, 125, 118, 120, 133, 125, 128, 142, 133, 135, 150, 141, 143, 158, 148, 151
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There are three types of nodes in this structure.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.

Crossrefs

Formula

Empirical: G.f 1 +x*(3+5*x+8*x^2+7*x^3+8*x^4+9*x^5+8*x^6+7*x^7+8*x^8+5*x^9+3*x^10) / ( (x^6+x^3+1)*(x-1)^2*(1+x+x^2)^2 ) with a(n)= +a(n-3) +a(n-9) -a(n-12). - R. J. Mathar, Sep 30 2011

Extensions

More terms from R. J. Mathar, Mar 29 2007
Extended by Joseph Myers, Sep 29 2011

A068600 Number of n-uniform tilings having n different arrangements of polygons about their vertices.

Original entry on oeis.org

11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Brian Galebach, Mar 28 2002

Keywords

Comments

Sequence gives the number of edge-to-edge regular-polygon tilings having n topologically distinct vertex types, with each vertex type having a different arrangement of surrounding polygons. Does not allow for tilings with two or more vertex types having the same arrangement of surrounding polygons, even when those vertices are topologically distinct. There are no 8- or higher-uniform tilings having the equivalent number of distinct polygon arrangements.
There are eleven 1-uniform tilings (also called the "Archimedean" tessellations) which comprise the three regular tessellations (all triangles, squares, or hexagons) plus the eight semiregular tessellations. (See A250120. - N. J. A. Sloane, Nov 29 2014)

References

  • This sequence was originally calculated by Otto Krotenheerdt.
  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
  • Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.

Crossrefs

Cf. A068599.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
Previous Showing 11-20 of 29 results. Next