A353842
Last part of the trajectory of the partition run-sum transformation of n, using Heinz numbers.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 7, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 13, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 35, 61, 62, 19, 13, 65, 66, 67, 51
Offset: 1
The partition run-sum trajectory of 87780 is: 87780 -> 65835 -> 51205 -> 19855 -> 2915, so a(87780) = 2915.
The fixed points and image are
A005117.
Other sequences pertaining to partition trajectory are
A353841-
A353846.
A353832 represents the operation of taking run-sums of a partition.
-
Table[NestWhile[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&],{n,100}]
A353844
Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1
The terms together with their prime indices begin:
1: {} 25: {3,3} 64: {1,1,1,1,1,1}
2: {1} 27: {2,2,2} 67: {19}
3: {2} 29: {10} 71: {20}
4: {1,1} 31: {11} 73: {21}
5: {3} 32: {1,1,1,1,1} 79: {22}
7: {4} 37: {12} 81: {2,2,2,2}
8: {1,1,1} 40: {1,1,1,3} 83: {23}
9: {2,2} 41: {13} 84: {1,1,2,4}
11: {5} 43: {14} 89: {24}
12: {1,1,2} 47: {15} 97: {25}
13: {6} 49: {4,4} 101: {26}
16: {1,1,1,1} 53: {16} 103: {27}
17: {7} 59: {17} 107: {28}
19: {8} 61: {18} 109: {29}
23: {9} 63: {2,2,4} 112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
A353832 represents the operation of taking run-sums of a partition.
A353838 ranks partitions with all distinct run-sums, counted by
A353837.
Cf.
A005811,
A073093,
A130091,
A181819,
A182857,
A304660,
A325239,
A325277,
A353839,
A353862,
A353867.
-
ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]
A124433
Irregular array {a(n,m)} read by rows where (sum{n>=1} sum{m=1 to A001222(n)+1} a(n,m)*y^m/n^x) = 1/(zeta(x)-1+1/y) for all x and y where the double sum converges.
Original entry on oeis.org
1, 0, -1, 0, -1, 0, -1, 1, 0, -1, 0, -1, 2, 0, -1, 0, -1, 2, -1, 0, -1, 1, 0, -1, 2, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 2, 0, -1, 2, 0, -1, 3, -3, 1, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 4, -3, 0, -1, 2, 0, -1, 2, 0, -1, 0, -1, 6, -9, 4, 0, -1, 1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 4, -3, 0, -1, 0, -1, 6, -6, 0, -1, 0, -1, 4, -6, 4, -1, 0, -1, 2, 0, -1, 2, 0, -1
Offset: 1
1/(zeta(x) - 1 + 1/y) = y - y^2/2^x - y^2/3^x + ( - y^2 + y^3)/4^x - y^2/5^x + ( - y^2 + 2y^3)/6^x - y^2/7^x + ...
From _Gus Wiseman_, Aug 24 2020: (Start)
The sequence of rows begins:
1: 1 16: 0 -1 3 -3 1 31: 0 -1
2: 0 -1 17: 0 -1 32: 0 -1 4 -6 4 -1
3: 0 -1 18: 0 -1 4 -3 33: 0 -1 2
4: 0 -1 1 19: 0 -1 34: 0 -1 2
5: 0 -1 20: 0 -1 4 -3 35: 0 -1 2
6: 0 -1 2 21: 0 -1 2 36: 0 -1 7 -12 6
7: 0 -1 22: 0 -1 2 37: 0 -1
8: 0 -1 2 -1 23: 0 -1 38: 0 -1 2
9: 0 -1 1 24: 0 -1 6 -9 4 39: 0 -1 2
10: 0 -1 2 25: 0 -1 1 40: 0 -1 6 -9 4
11: 0 -1 26: 0 -1 2 41: 0 -1
12: 0 -1 4 -3 27: 0 -1 2 -1 42: 0 -1 6 -6
13: 0 -1 28: 0 -1 4 -3 43: 0 -1
14: 0 -1 2 29: 0 -1 44: 0 -1 4 -3
15: 0 -1 2 30: 0 -1 6 -6 45: 0 -1 4 -3
(End)
- Mohammad K. Azarian, A Double Sum, Problem 440, College Mathematics Journal, Vol. 21, No. 5, Nov. 1990, p. 424. Solution published in Vol. 22. No. 5, Nov. 1991, pp. 448-449.
A008480 gives rows ends (up to sign).
A008683 gives row sums (the Moebius function).
A097805 is the restriction to powers of 2 (up to sign).
A251683 is the unsigned version with zeros removed.
A334996 is the unsigned version (except with a(1) = 0).
A334997 is an unsigned non-strict version.
A337107 is the restriction to factorial numbers.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.
-
f[l_List] := Block[{n = Length[l] + 1, c},c = Plus @@ Last /@ FactorInteger[n];Append[l, Prepend[ -Plus @@ Pick[PadRight[ #, c] & /@ l, Mod[n, Range[n - 1]], 0],0]]];Nest[f, {{1}}, 34] // Flatten(* Ray Chandler, Feb 13 2007 *)
chnsc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]];
Table[(-1)^k*Length[Select[chnsc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 24 2020 *)
A336865
Irregular triangle read by rows where T(n,k) is the number of divisors of n with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0
Offset: 1
The triangle begins as follows. The n-th row is shown to the right of "n:".
1: (1) 16: (1,1,1,1,1) 31: (1,1)
2: (1,1) 17: (1,1) 32: (1,1,1,1,1,1)
3: (1,1) 18: (1,2,1,1) 33: (1,2,0)
4: (1,1,1) 19: (1,1) 34: (1,2,0)
5: (1,1) 20: (1,2,1,1) 35: (1,2,0)
6: (1,2,0) 21: (1,2,0) 36: (1,2,2,2,0)
7: (1,1) 22: (1,2,0) 37: (1,1)
8: (1,1,1,1) 23: (1,1) 38: (1,2,0)
9: (1,1,1) 24: (1,2,1,2,1) 39: (1,2,0)
10: (1,2,0) 25: (1,1,1) 40: (1,2,1,2,1)
11: (1,1) 26: (1,2,0) 41: (1,1)
12: (1,2,1,1) 27: (1,1,1,1) 42: (1,3,0,0)
13: (1,1) 28: (1,2,1,1) 43: (1,1)
14: (1,2,0) 29: (1,1) 44: (1,2,1,1)
15: (1,2,0) 30: (1,3,0,0) 45: (1,2,1,1)
Row n = 72 counts the following divisors:
1 2 4 8 24 72
3 9 12
18
Row n = 1200 counts the following divisors:
1 2 4 8 16 48 400 1200
3 25 12 24 80 600
5 20 40 200
50
75
A130092 gives positions of rows ending with 0.
A146291 is the version not requiring distinct prime multiplicities.
A336499 is the restriction to factorial numbers.
A001222 counts prime factors, counting multiplicity.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
-
Table[Length[Select[Divisors[n],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,20},{k,0,PrimeOmega[n]}]
A354583
Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.
Original entry on oeis.org
12, 24, 36, 40, 48, 60, 63, 72, 80, 84, 96, 108, 112, 120, 126, 132, 144, 156, 160, 168, 180, 189, 192, 200, 204, 216, 224, 228, 240, 252, 264, 276, 280, 288, 300, 312, 315, 320, 324, 325, 336, 348, 351, 352, 360, 372, 378, 384, 396, 400, 408, 420, 432, 440
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
84: {1,1,2,4}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
120: {1,1,1,2,3}
126: {1,2,2,4}
132: {1,1,2,5}
144: {1,1,1,1,2,2}
156: {1,1,2,6}
160: {1,1,1,1,1,3}
168: {1,1,1,2,4}
For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence.
Non-knapsack partitions are ranked by
A299729.
The complement for compositions is counted by
A354580.
A073093 counts prime-power divisors.
A353852 ranks compositions with all distinct run-sums, counted by
A353850.
A353861 counts distinct partial run-sums of prime indices.
Cf.
A005811,
A118914,
A124010,
A175413,
A181819,
A182857,
A316413,
A325862,
A353834,
A353835,
A353836,
A353931.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&]
A075795
Number of k, 0
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 5, 4, 6, 7, 9, 8, 11, 11, 12, 11, 15, 14, 17, 16, 18, 19, 21, 19, 22, 23, 23, 24, 27, 26, 29, 26, 30, 31, 32, 31, 35, 35, 36, 35, 39, 38, 41, 40, 41, 43, 45, 42, 46, 46, 48, 48, 51, 49, 52, 51, 54, 55, 57, 55, 59, 59, 59, 57, 62, 62, 65, 64, 66, 66, 69, 66, 71
Offset: 1
- Robert Israel, Table of n, a(n) for n = 1..10000
- T. M. Apostol, Resultants of Cyclotomic Polynomials, Proc. Amer. Math. Soc. 24, 457-462, 1970.
- T. M. Apostol, The Resultant of the Cyclotomic Polynomials Fm(ax) and Fn(bx), Math. Comput. 29, 1-6, 1975.
- Eric Weisstein's World of Mathematics, Cyclotomic polynomials.
-
seq(n -numtheory:-bigomega(n)-1, n=1..1000); # Robert Israel, Jul 25 2016
-
Table[n - PrimeOmega@ n - 1, {n, 73}] (* Michael De Vlieger, Jul 26 2016 *)
-
a(n)=sum(k=1,n,if(1-polresultant(polcyclo(n),polcyclo(k)),0,1))
a(30)=2 and a(31)=6 merged into a(30)=26 by
Mats Granvik, Jul 24 2016
A144549
Triangular numbers p*(p+1)/2 with p prime such that 1+(number of prime factors of p+1) is prime.
Original entry on oeis.org
3, 6, 15, 91, 276, 703, 1431, 1770, 1891, 2701, 3486, 4005, 5356, 8646, 9730, 11175, 11476, 12403, 18721, 19503, 24976, 25878, 27261, 28680, 38503, 43071, 47278, 49141, 60378, 61075, 64620, 72010, 75855, 79003, 88831, 98346, 104653, 106491
Offset: 1
3 has one prime factor; 1+1 = 2 is prime, hence 2*3/2 = 3 is in the sequence.
14 = 2*7 has two prime factors; 1+2 = 3 is prime, hence 13*14/2 = 91 is in the sequence.
24 = 2*2*2*3 has four prime factors; 1+4 = 5 is prime, hence 23*24/2 = 276 is in the sequence.
-
[ p*(p+1)/2: p in PrimesUpTo(490) | IsPrime(1 + &+[ f[2]: f in Factorization(p+1) ]) ];
-
aQ[n_] := PrimeQ[n] && PrimeQ[PrimeOmega[n + 1] + 1]; p = Select[Range[470], aQ]; p*(p + 1)/2 (* Amiram Eldar, Aug 31 2019 *)
Edited, corrected (3 inserted) and extended beyond a(16) by
Klaus Brockhaus, Jan 05 2009
A248906
Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).
Original entry on oeis.org
0, 1, 2, 5, 8, 3, 16, 37, 66, 9, 128, 7, 256, 17, 10, 549, 1024, 67, 2048, 13, 18, 129, 4096, 39, 8200, 257, 16450, 21, 32768, 11, 65536, 131621, 130, 1025, 24, 71, 262144, 2049, 258, 45, 524288, 19, 1048576, 133, 74, 4097, 2097152, 551, 4194320, 8201
Offset: 1
The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.
-
a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row
-- Reinhard Zumkeller, Mar 07 2015
-
al(n) = my(r=vector(n),pps=[p| p <- [1..n], isprimepower(p)],p2); for(k=1,#pps,p2=2^(k-1);forstep(j=pps[k],n,pps[k],r[j]+=p2));r
Original entry on oeis.org
0, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 2, 5, 2, 2, 2, 4, 2, 2, 2, 4, 2, 3, 2, 3, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 3, 6, 2, 3, 2, 3, 2, 3, 2, 5, 2, 2, 3, 3, 2, 3, 2, 5, 4, 2, 2, 4, 2, 2, 2, 4, 2, 4
Offset: 1
-
Array[Boole[PrimeQ[#]] + PrimeOmega[#] &, 100]
-
a(n) = isprime(n) + bigomega(n); \\ Michel Marcus, Nov 23 2024
A191278
Count of Mosaic numbers that equal n.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 6, 1, 3, 3, 1, 1, 6, 1, 6, 3, 3, 1, 10, 1, 3, 1, 6, 1, 16, 1, 1, 3, 3, 3, 20, 1, 3, 3, 10, 1, 16, 1, 6, 6, 3, 1, 15, 1, 6, 3, 6, 1, 10, 3, 10, 3, 3, 1, 50, 1, 3, 6, 1, 3, 16, 1, 6, 3, 16, 1, 50, 1, 3, 6, 6, 3, 16, 1, 15, 1, 3, 1, 50, 3, 3, 3, 10, 1, 50
Offset: 1
-
A191278 := proc(n)
local f, beta, a, j ;
f := ifactors(n)[2] ;
beta := A073093(n) ;
a := 1/beta ;
for j in ifactors(n)[2] do
a := a*binomial(beta, op(2, j) ) ;
end do:
a ;
end proc:
Comments