A075259 Number of solutions (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z and odd x, y, z.
0, 1, 2, 1, 1, 5, 2, 1, 3, 5, 1, 12, 8, 3, 3, 5, 14, 8, 6, 4, 7, 20, 1, 9, 6, 3, 22, 11, 3, 11, 31, 24, 5, 10, 3, 11, 16, 20, 6, 23, 2, 35, 7, 3, 35, 15, 25, 16, 47, 8, 12, 54, 3, 9, 8, 4, 42, 41, 22, 11, 8, 25, 8, 15, 5, 61, 92, 3, 7, 16, 28, 47, 37, 7, 10, 40, 23, 13, 11, 29, 11, 75, 3
Offset: 1
Examples
a(3)=2 because there are two solutions: 3/7 = 1/3+1/11+1/231 and 3/7 = 1/3+1/15+1/35.
References
- R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, D11.
Links
- T. D. Noe, Table of n, a(n) for n=1..499
- Thomas R. Hagedorn, A proof of a conjecture on Egyptian fractions, Amer. Math Monthly, 107 (2000), 62-63.
- Stan Wagon, Problem of the Week 848: An Odd Egyptian Puzzle
- Eric Weisstein's World of Mathematics, Egyptian Fraction
Programs
-
Mathematica
m = 3; For[lst = {}; n = 3, n <= 200, n = n + 2, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; If[OddQ[x y z], cnt++;(*Print[n, " ", x, " ", y, " ", z]*)]]]]; AppendTo[lst, cnt]]; lst
Extensions
More terms from T. D. Noe, Oct 15 2002
Comments