A376602
Inflection and undulation points in the sequence of composite numbers (A002808).
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, 39, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 60, 61, 62, 65, 66, 67, 68, 69, 72, 74, 76, 78, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96, 99, 100, 101, 103, 105, 106, 107, 108
Offset: 1
The composite numbers (A002808) are:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with zeros at (A376602):
1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, ...
Partitions into composite numbers are counted by
A023895, factorizations
A050370.
For prime instead of composite we have
A064113.
These are the positions of zeros in
A073445.
For upward concavity (instead of zero) we have
A376651, downward
A376652.
A379301
Positive integers whose prime indices include a unique composite number.
Original entry on oeis.org
7, 13, 14, 19, 21, 23, 26, 28, 29, 35, 37, 38, 39, 42, 43, 46, 47, 52, 53, 56, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 84, 86, 87, 89, 92, 94, 95, 97, 101, 103, 104, 105, 106, 107, 111, 112, 113, 114, 115, 116, 117, 119, 122, 126, 129, 130, 131
Offset: 1
The prime indices of 70 are {1,3,4}, so 70 is in the sequence.
The prime indices of 98 are {1,4,4}, so 98 is not in the sequence.
A066247 is the characteristic function for the composite numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Select[prix[#],CompositeQ]]==1&]
A377034
Antidiagonal-sums of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).
Original entry on oeis.org
4, 8, 10, 8, 14, 14, 11, 24, 10, 20, 37, -10, 56, 26, -52, 260, -659, 2393, -8128, 25703, -72318, 184486, -430901, 933125, -1888651, 3597261, -6479654, 11086964, -18096083, 28307672, -42644743, 62031050, -86466235, 110902085, -110907437, 52379, 483682985
Offset: 1
The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 8.
The version for prime instead of composite is
A140119, noncomposite
A376683.
This is the antidiagonal-sums of the array
A377033, absolute version
A377035.
For squarefree instead of composite we have
A377039, absolute version
A377040.
For nonsquarefree instead of composite we have
A377047, absolute version
A377048.
For prime-power instead of composite we have
A377052, absolute version
A377053.
-
q=Select[Range[100],CompositeQ];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
Total/@Table[t[[j,i-j+1]],{i,Length[q]/2},{j,i}]
A377037
Position of first zero in the n-th differences of the composite numbers (A002808), or 0 if it does not appear.
Original entry on oeis.org
1, 14, 2, 65, 1, 83, 2, 7, 1, 83, 2, 424, 12, 32, 11, 733, 10, 940, 9, 1110, 8, 1110, 7, 1110, 6, 1110, 112, 1110, 111, 1110, 110, 2192, 109, 13852, 108, 13852, 107, 13852, 106, 13852, 105, 17384, 104, 17384, 103, 17384, 102, 17384, 101, 27144, 552, 28012, 551
Offset: 2
The third differences of the composite numbers are:
-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -2, 1, 0, 0, 1, -1, -1, ...
so a(3) = 14.
The version for prime instead of composite is
A376678.
For noncomposite numbers we have
A376855.
This is the first position of 0 in row n of the array
A377033.
For squarefree instead of composite we have
A377042, nonsquarefree
A377050.
For prime-power instead of composite we have
A377055.
A377036 gives first term of the n-th differences of the composite numbers, for primes
A007442 or
A030016.
Cf.
A018252,
A064113,
A065310,
A065890,
A140119,
A173390,
A233671,
A258025,
A258026,
A350004,
A376602 (zero),
A376603 (nonzero),
A376651 (positive),
A376652 (negative),
A376680,
A377034,
A377035.
-
nn=10000;
u=Table[Differences[Select[Range[nn],CompositeQ],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A376603
Points of nonzero curvature in the sequence of composite numbers (A002808).
Original entry on oeis.org
2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, 49, 51, 55, 56, 58, 59, 63, 64, 70, 71, 73, 75, 77, 79, 81, 82, 94, 95, 97, 98, 102, 104, 112, 114, 118, 119, 123, 124, 126, 127, 131, 132, 136, 138, 146, 148, 150, 152, 162, 163
Offset: 1
The composite numbers (A002808) are:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with nonzero terms at (A376603):
2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, ...
Partitions into composite numbers are counted by
A023895, factorizations
A050370.
These are the positions of nonzero terms in
A073445.
For prime instead of composite we have
A333214.
For upward concavity (instead of nonzero) we have
A376651, downward
A376652.
A379312
Positive integers whose prime indices include a unique 1 or prime number.
Original entry on oeis.org
2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
11: {5}
14: {1,4}
17: {7}
21: {2,4}
26: {1,6}
31: {11}
35: {3,4}
38: {1,8}
39: {2,6}
41: {13}
46: {1,9}
57: {2,8}
58: {1,10}
59: {17}
65: {3,6}
67: {19}
69: {2,9}
74: {1,12}
77: {4,5}
These "old" primes are listed by
A008578.
A080339 is the characteristic function for the old prime numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]
A376604
Second differences of the Kolakoski sequence (A000002). First differences of A054354.
Original entry on oeis.org
-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -2, 1, 1, -2, 1, 1, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1
Offset: 1
The Kolakoski sequence (A000002) is:
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, ...
with first differences (A054354):
1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, ...
with first differences (A376604):
-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, ...
A078649 appears to be zeros of the first and third differences.
A288605 gives positions of first appearances of each balance.
A333254 lists run-lengths of differences between consecutive primes.
For the Kolakoski sequence (
A000002):
-
kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,2},1,{1,2,1},2,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
kol[n_]:=Nest[kolagrow,{1},n-1];
Differences[kol[100],2]
A376651
Points of upward concavity in the sequence of composite numbers (A002808).
Original entry on oeis.org
4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, 102, 112, 118, 123, 126, 131, 136, 146, 150, 162, 173, 176, 180, 185, 195, 200, 205, 210, 216, 219, 229, 242, 245, 249, 262, 267, 276, 280, 285, 292, 297, 302, 305, 310, 317, 320
Offset: 1
The composite numbers are (A002808):
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with positive terms at (A376651):
4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, ...
Partitions into composite numbers are counted by
A023895, factorizations
A050370.
These are the positions of positive terms in
A073445, negative
A376652.
For zero second differences (instead of positive) we have
A376602.
A376652
Points of downward concavity in the sequence of composite numbers (A002808).
Original entry on oeis.org
2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1
The composite numbers are (A002808):
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with second differences (A073445):
0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with negative terms at (A376651):
2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
Partitions into composite numbers are counted by
A023895, factorizations
A050370.
These are the positions of negative terms in
A073445, positive
A376651.
For zero second differences instead of negative we have
A376602.
-
Comps:= remove(isprime, [seq(i,i=4..1000)]):
D1:= Comps[2..-1]-Comps[1..-2]:
D2:= D1[2..-1]-D1[1..-2]:
select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
-
Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]
A376680
Run-lengths of first differences of composite numbers.
Original entry on oeis.org
2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, 1, 4, 1, 6, 1, 2, 2, 2, 2, 2, 1, 12, 1, 2, 1, 4, 2, 8, 2, 4, 1, 4, 1, 2, 1, 4, 1, 4, 2, 8, 2, 2, 2, 10, 1, 10, 1, 2, 2, 2, 1, 4, 2, 8, 1, 4, 1, 4, 1, 4, 2, 4, 1, 2, 2, 8, 1, 12, 1, 2
Offset: 1
The composite numbers (A002808) are:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with runs:
(2,2), (1,1), (2,2), (1,1), (2,2), (1,1), (2), (1,1,1,1), (2,2), (1,1,1,1), ...
with lengths (A376680):
2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, ...
For prime instead of composite we have
A333254, first appearances
A335406.
These are the first differences of
A376603.
A064113 lists positions of adjacent equal prime gaps.
Comments