cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A356841 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 68, 72, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  18: (3,2)
  20: (2,3)
  21: (2,2,1)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073491, complement A073492.
These compositions are counted by A107428.
The complement is A356842.
The non-initial case is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],nogapQ[stc[#]]&]

A073486 Squarefree numbers having at least one prime gap.

Original entry on oeis.org

10, 14, 21, 22, 26, 33, 34, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 145, 146, 154, 155, 158, 159, 161, 165, 166, 170, 174, 177
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

Subsequence of A193166. - Reinhard Zumkeller, Aug 26 2011

Crossrefs

Programs

  • Mathematica
    q[n_] := SequenceCount[FactorInteger[n][[;; , 1]], {p1_, p2_} /; p2 != NextPrime[p1]] > 0; Select[Range[177], SquareFreeQ[#] && q[#] &] (* Amiram Eldar, Apr 10 2021 *)

Formula

A073484(a(n)) > 0 and A073483(a(n)) > 1.
A192280(a(n)) = 0. - Reinhard Zumkeller, Aug 26 2011

A375401 Number of integer partitions of n whose maximal anti-runs do not all have different maxima.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 33, 48, 63, 88, 116, 157, 204, 272, 349, 456, 581, 749, 946, 1205, 1511, 1904, 2371, 2960, 3661, 4538, 5577, 6862, 8389, 10257, 12472, 15164, 18348, 22192, 26731, 32177, 38593, 46254, 55256, 65952, 78500, 93340, 110706
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.

Examples

			The partition y = (3,2,2,1) has maximal ant-runs ((3,2),(2,1)), with maxima (3,2), so y is not counted under a(8).
The a(2) = 1 through a(8) = 12 partitions:
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (2111)   (222)     (2221)     (332)
                       (11111)  (2211)    (4111)     (2222)
                                (3111)    (22111)    (3311)
                                (21111)   (31111)    (5111)
                                (111111)  (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

For identical instead of distinct we have A239955, ranks A073492.
The complement is counted by A375133, ranks A375402.
The complement for minima instead of maxima is A375134, ranks A375398.
These partitions have Heinz numbers A375403.
For minima instead of maxima we have A375404, ranks A375399.
The reverse for identical instead of distinct is A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]

A375404 Number of integer partitions of n whose minima of maximal anti-runs are not all different.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 7, 9, 14, 19, 30, 38, 56, 73, 102, 133, 179, 231, 307, 392, 511, 647, 831, 1046, 1328, 1658, 2084, 2586, 3219, 3970, 4909, 6016, 7386, 9005, 10988, 13330, 16175, 19531, 23580, 28350, 34067, 40788, 48809, 58215, 69383, 82461, 97917, 115976
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.
Also the number of reversed integer partitions of n such that the minima of maximal anti-runs are not all different.

Examples

			The a(0) = 0 through a(8) = 14 reversed partitions:
  .  .  (11)  (111)  (22)    (113)    (33)      (115)      (44)
                     (112)   (1112)   (114)     (223)      (116)
                     (1111)  (11111)  (222)     (1114)     (224)
                                      (1113)    (1123)     (1115)
                                      (1122)    (1222)     (1124)
                                      (11112)   (11113)    (1133)
                                      (111111)  (11122)    (2222)
                                                (111112)   (11114)
                                                (1111111)  (11123)
                                                           (11222)
                                                           (111113)
                                                           (111122)
                                                           (1111112)
                                                           (11111111)
		

Crossrefs

The complement for maxima instead of minima is A375133, ranks A375402.
The complement is counted by A375134, ranks A375398.
These partitions are ranked by A375399.
For maxima instead of minima we have A375401, ranks A375403.
For identical instead of distinct we have A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]

A356844 Numbers k such that the k-th composition in standard order contains at least one 1. Numbers that are odd or whose binary expansion contains at least two adjacent 1's.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms, binary expansions, and standard compositions:
   1:       1  (1)
   3:      11  (1,1)
   5:     101  (2,1)
   6:     110  (1,2)
   7:     111  (1,1,1)
   9:    1001  (3,1)
  11:    1011  (2,1,1)
  12:    1100  (1,3)
  13:    1101  (1,2,1)
  14:    1110  (1,1,2)
  15:    1111  (1,1,1,1)
  17:   10001  (4,1)
  19:   10011  (3,1,1)
  21:   10101  (2,2,1)
  22:   10110  (2,1,2)
  23:   10111  (2,1,1,1)
  24:   11000  (1,4)
  25:   11001  (1,3,1)
  26:   11010  (1,2,2)
  27:   11011  (1,2,1,1)
  28:   11100  (1,1,3)
  29:   11101  (1,1,2,1)
  30:   11110  (1,1,1,2)
  31:   11111  (1,1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The case beginning with 1 is A004760, complement A004754.
The complement is A022340.
These compositions are counted by A099036, complement A212804.
The case covering an initial interval is A333217.
The gapless but non-initial version is A356843, unordered A356845.

Programs

  • Mathematica
    Select[Range[0,100],OddQ[#]||MatchQ[IntegerDigits[#,2],{_,1,1,_}]&]

Formula

Union of A005408 and A004780.

A137794 Characteristic function of numbers having no prime gaps in their factorization.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 11 2008

Keywords

Crossrefs

Cf. A137721 (partial sums).

Programs

  • Mathematica
    a[n_] := With[{pp = PrimePi @ FactorInteger[n][[All, 1]]},
         Boole[pp[[-1]] - pp[[1]] + 1 == Length[pp]]];
    Array[a, 105] (* Jean-François Alcover, Dec 09 2021 *)
  • PARI
    A137794(n) = if(1>=omega(n),1,my(pis=apply(primepi,factor(n)[,1])); for(k=2,#pis,if(pis[k]>(1+pis[k-1]),return(0))); (1)); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = 0^A073490(n).
a(A073491(n)) = 1; a(A073492(n)) = 0;
a(n) = A137721(n) - A137721(n-1) for n>1.

A073494 Numbers having exactly two prime gaps in their factorization.

Original entry on oeis.org

110, 130, 170, 182, 190, 220, 230, 238, 260, 266, 273, 290, 310, 322, 340, 357, 364, 370, 374, 380, 399, 406, 410, 418, 430, 434, 440, 460, 470, 476, 483, 494, 506, 518, 520, 530, 532, 546, 550, 561, 574, 580, 590, 598, 602, 609, 610, 620, 627, 638, 644
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073490(a(n)) = 2.

Examples

			220 is a term, as 220 = 2*2*5*11 with two gaps: between 2 and 5 and between 5 and 11.
		

Crossrefs

Programs

  • Haskell
    a073494 n = a073494_list !! (n-1)
    a073494_list = filter ((== 2) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[645], Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] == 2 &] (* Jayanta Basu, Jul 01 2013 *)

A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.

Original entry on oeis.org

2, 4, 8, 10, 16, 18, 20, 32, 36, 42, 64, 68, 72, 74, 82, 84, 128, 136, 146, 148, 164, 170, 256, 264, 272, 274, 276, 290, 292, 296, 298, 324, 328, 330, 338, 340, 512, 528, 548, 580, 584, 586, 594, 596, 658, 660, 676, 682, 1024, 1040, 1056, 1092, 1096, 1098
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   18: (3,2)
   20: (2,3)
   32: (6)
   36: (3,3)
   42: (2,2,2)
   64: (7)
   68: (4,3)
   72: (3,4)
   74: (3,2,2)
   82: (2,3,2)
   84: (2,2,3)
		

Crossrefs

See link for sequences related to standard compositions.
A subset of A022340.
These compositions are counted by A251729.
The unordered version (using Heinz numbers of partitions) is A356845.
A333217 ranks complete compositions.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356841 ranks gapless compositions, counted by A107428.
A356842 ranks non-gapless compositions, counted by A356846.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&]

Formula

Complement of A333217 in A356841.

A375405 Number of integer partitions of n with a repeated part other than the least.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 13, 20, 29, 42, 62, 83, 117, 158, 214, 283, 377, 488, 641, 823, 1058, 1345, 1714, 2154, 2713, 3387, 4222, 5230, 6474, 7959, 9782, 11956, 14591, 17737, 21529, 26026, 31422, 37811, 45425, 54418, 65097, 77652, 92510, 109943, 130468
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

Also partitions whose minima of maximal anti-runs are not identical. An anti-run is a sequence with no adjacent equal terms. The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.

Examples

			The a(0) = 0 through a(10) = 13 partitions:
  .  .  .  .  .  (221)  (2211)  (331)    (332)     (441)      (442)
                                (2221)   (3221)    (3321)     (3322)
                                (22111)  (3311)    (4221)     (3331)
                                         (22211)   (22221)    (4411)
                                         (221111)  (32211)    (5221)
                                                   (33111)    (32221)
                                                   (222111)   (33211)
                                                   (2211111)  (42211)
                                                              (222211)
                                                              (322111)
                                                              (331111)
                                                              (2221111)
                                                              (22111111)
		

Crossrefs

The complement for maxima instead of minima is A034296.
The complement is counted by A115029, ranks A375396.
For maxima instead of minima we have A239955, ranks A073492.
These partitions have ranks A375397.
For distinct instead of identical we have A375404, ranks A375399.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !SameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
    - or -
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@DeleteCases[#,Min@@#]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=sum(i=1,N,sum(j=i+1,N-i, ((x^(i+(2*j)))/(1-x^i))*prod(k=i+1,N-i-(2*j), if(kJohn Tyler Rascoe, Aug 21 2024

Formula

G.f.: Sum_{i>0} (Sum_{j>i} ( (x^(i+(2*j)))/(1-x^i) * Product_{k>=i} (1-[kJohn Tyler Rascoe, Aug 21 2024
Previous Showing 21-30 of 44 results. Next