cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A091032 Second column (k=3) of array A090438 ((4,2)-Stirling2) divided by 8.

Original entry on oeis.org

1, 60, 5040, 604800, 99792000, 21794572800, 6102480384000, 2134124568576000, 912338253066240000, 468333636574003200000, 284372184127734743040000, 201645730563302817792000000, 165147853331345007771648000000
Offset: 2

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A002674 (first column of A090438), A091033 (third column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(2*n)!/4!; Array[a, 13, 2] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 3)/8 = (n-1)*(2*n)!/4!
E.g.f.: (-3*hypergeom([1/2, 1], [], 4*x) + hypergeom([1, 3/2], [], 4*x) + 2)/(8*3!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = 60 - 24*Gamma - 24*cosh(1) + 24*CoshIntegral(1) - 24*sinh(1).
Sum_{n>=2} (-1)^n/a(n) = -12 + 24*gamma - 24*cos(1) - 24*CosIntegral(1) + 24*SinIntegral(1). (End)
a(n+1) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j) (Campbell, Eq. 17). - Peter Bala, Mar 30 2025

A091034 Fourth column (k=5) of array A090438 ((4,2)-Stirling2) divided by 24.

Original entry on oeis.org

1, 280, 70560, 19958400, 6659452800, 2644408166400, 1244905998336000, 689322235650048000, 444916954745303040000, 331767548149023866880000, 283424276847308960563200000, 275246422218908346286080000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091033 (third column of A090438), A091035 (fifth column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(n - 2)*(2*n - 3)*(2*n)!/(5!*(3!)^2); Array[a, 12, 3] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2); \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 5)/24, n>=3.
a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2), n>=3.
E.g.f.: (Sum_{p=2..5} (((-1)^(p+1))*binomial(5, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) + 4)/(5!*4!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = 2010 - 4680*Gamma + 1800*cosh(1) + 4680*CoshIntegral(1) - 2520*sinh(1) - 2880*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = -2010 - 3960*gamma + 3240*cos(1) + 3960*CosIntegral(1) - 1800*sin(1) + 2880*SinIntegral(1). (End)

A091035 Fifth column (k=6) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 840, 352800, 139708800, 59935075200, 29088489830400, 16183777978368000, 10339833534750720000, 7563588230670151680000, 6303583414831453470720000, 5951909813793488171827200000, 6330667711034891964579840000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091034 (fourth column of A090438 divided by 24), A091036 (sixth column divided by 48), A053134, A090438.

Programs

  • Mathematica
    Table[Binomial[2n-2,4] (2n)!/6!,{n,3,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = binomial(2*n-2, 4)*(2*n)!/6!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 6), n>=3.
a(n) = binomial(2*n-2, 4)*(2*n)!/6! = A053134(n-3)*(2*n)!/6!, n>=3.
E.g.f.: (Sum_{p=2..6} (((-1)^p)*binomial(6, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) - 5)/6! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = -594 + 1800*Gamma - 1008*cosh(1) - 1800*CoshIntegral(1) + 912*sinh(1) + 1464*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1554 + 1080*gamma - 1248*cos(1) - 1080*CosIntegral(1) + 240*sin(1) - 1416*SinIntegral(1). (End)

A334400 Decimal expansion of cosh(e).

Original entry on oeis.org

7, 6, 1, 0, 1, 2, 5, 1, 3, 8, 6, 6, 2, 2, 8, 8, 3, 6, 3, 4, 1, 8, 6, 1, 0, 2, 3, 0, 1, 1, 3, 3, 7, 9, 1, 6, 5, 2, 3, 3, 5, 6, 2, 7, 9, 2, 5, 5, 4, 4, 6, 8, 1, 0, 2, 7, 7, 1, 6, 0, 9, 9, 7, 3, 7, 4, 0, 7, 8, 3, 6, 5, 1, 8, 8, 0, 8, 4, 5, 3, 7, 0, 3, 5, 6, 2, 7, 2, 6, 0, 5, 4, 0, 5, 6, 2, 2, 4, 6, 4, 1, 2, 8, 6, 3, 1, 2, 6, 7, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Examples

			(e^e + e^(-e))/2 = 7.6101251386622883634186102301133791...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[E], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} e^(2*k)/(2*k)!.

A365927 Decimal expansion of arccosh(e).

Original entry on oeis.org

1, 6, 5, 7, 4, 5, 4, 4, 5, 4, 1, 5, 3, 0, 7, 7, 2, 7, 2, 5, 9, 3, 8, 2, 8, 7, 4, 2, 2, 8, 0, 5, 3, 4, 7, 3, 9, 1, 5, 8, 3, 9, 2, 7, 6, 2, 0, 3, 3, 6, 7, 6, 8, 2, 5, 8, 4, 8, 5, 8, 2, 2, 0, 8, 9, 3, 7, 6, 9, 6, 3, 2, 6, 5, 4, 7, 0, 7, 7, 6, 6, 0, 6, 9, 1, 6, 3
Offset: 1

Views

Author

Kritsada Moomuang, Oct 15 2023

Keywords

Examples

			1.65745445415307727259382874228053...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCosh[E], 10, 100] [[1]]
  • PARI
    acosh(exp(1)) \\ Amiram Eldar, Oct 18 2023

Formula

Equals log(A188739). - Amiram Eldar, Oct 18 2023

A196932 Decimal expansion of sinh(1)*cosh(1).

Original entry on oeis.org

1, 8, 1, 3, 4, 3, 0, 2, 0, 3, 9, 2, 3, 5, 0, 9, 3, 8, 3, 8, 3, 4, 1, 0, 6, 9, 9, 1, 4, 0, 0, 6, 3, 0, 8, 5, 2, 4, 4, 3, 1, 7, 1, 0, 0, 6, 1, 6, 0, 5, 6, 7, 8, 6, 0, 6, 5, 4, 7, 4, 2, 2, 3, 7, 4, 6, 7, 1, 2, 5, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2011

Keywords

Comments

Also decimal expansion of sinh(2)/2.
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			sinh(1)*cosh(1) = sinh(2)/2 = 1.8134302039235093838341...
		

Crossrefs

Programs

Formula

Equals Product_{k>=1} 1 + 4/(k * Pi)^2. - Amiram Eldar, Jul 16 2020

Extensions

a(25)-a(72) from John W. Layman, Oct 24 2011

A322544 a(n) is the reciprocal of the coefficient of x^n in the power series defined by ((1+2x)*exp(x) + 3*exp(-x) - 4)/ (4x^2).

Original entry on oeis.org

1, 6, 8, 60, 180, 1680, 8064, 90720, 604800, 7983360, 68428800, 1037836800, 10897286400, 186810624000, 2324754432000, 44460928512000, 640237370572800, 13516122267648000, 221172909834240000, 5109094217170944000, 93666727314800640000, 2350183339898634240000, 47726800133326110720000
Offset: 0

Views

Author

Pierre-Alain Sallard, Dec 14 2018

Keywords

Crossrefs

Cf. A060593 (even bisection, shifted), A028242 (denominator minus 1), A030451 (denominator, shifted), A107991 (Expansion of a similar function), A073743.

Programs

  • GAP
    List([0..25],n->(4*Factorial(n+2))/(2*n+5+3*(-1)^n)); # Muniru A Asiru, Dec 20 2018
  • Maple
    a:=n->factorial(n+2)/(3*floor(n/2)-n+2): seq(a(n),n=0..25); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    Table[4*Factorial[n + 2]/(2*n + 5 + 3*(-1)^n), {n, 0, 25}]
    (* or *)
    Function[x, 1/x] /@
    CoefficientList[Series[(Exp[x]/4 + 3/4*Exp[-x] + x/2*Exp[x] - 1)/x^2, {x, 0, 20}], x]
  • PARI
    a(n)={(4*(n+2)!)/(5 + 3*(-1)^n + 2*n)} \\ Andrew Howroyd, Dec 14 2018
    
  • PARI
    my(x='x + O('x^30)); Vec(apply(x->1/x, ((1+2*x)*exp(x) + 3*exp(-x) - 4)/ (4*x^2))) \\ Michel Marcus, Dec 19 2018
    

Formula

a(n) = (n+2)!/(3*floor(n/2)-n+2).
a(n) = (4*(n+2)!)/(2n+5+3*(-1)^n).
a(n) = 4/([x^n]((exp(x)*(1+2x)+3*exp(-x)-4)/x^2)).
a(n) = (n+2)!/(A028242(n)+1).
a(n) = (n+2)!/A030451(n+1).
a(n) ~ sqrt(Pi/2)/72*exp(-n)*n^(n-1/2)*(1705 - 264*n + 288*n^2). - Stefano Spezia, Aug 11 2025
Sum_{n>=0} 1/a(n) = 3*cosh(1)/2 - 1. - Amiram Eldar, Aug 15 2025

A334366 Decimal expansion of Sum_{k>=0} 1/(4*k)!!.

Original entry on oeis.org

1, 1, 2, 7, 6, 2, 5, 9, 6, 5, 2, 0, 6, 3, 8, 0, 7, 8, 5, 2, 2, 6, 2, 2, 5, 1, 6, 1, 4, 0, 2, 6, 7, 2, 0, 1, 2, 5, 4, 7, 8, 4, 7, 1, 1, 8, 0, 9, 8, 6, 6, 7, 4, 8, 3, 6, 2, 8, 9, 8, 5, 7, 3, 5, 1, 8, 7, 8, 5, 8, 7, 7, 0, 3, 0, 3, 9, 8, 2, 0, 1, 6, 3, 1, 5, 7, 1, 2, 0, 6, 5, 7, 8, 2, 1, 7, 8, 0, 4, 9, 5, 1, 4, 6, 4, 5, 2, 1, 3, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(2^0*0!) + 1/(2^2*2!) + 1/(2^4*4!) + ... = 1.1276259652063807852...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[1/2], 10, 110] [[1]]
  • PARI
    cosh(1/2) \\ Michel Marcus, Apr 25 2020

Formula

Equals cosh(1/2).
Equals Product_{k>=0} 1 + 1/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020

A349804 Decimal expansion of cosh(1) - cos(1).

Original entry on oeis.org

1, 0, 0, 2, 7, 7, 8, 3, 2, 8, 9, 4, 7, 1, 0, 4, 0, 6, 1, 0, 7, 6, 9, 6, 9, 0, 1, 3, 3, 1, 4, 0, 8, 5, 0, 7, 8, 8, 6, 9, 2, 1, 8, 6, 9, 1, 7, 4, 7, 9, 4, 1, 4, 7, 7, 0, 6, 7, 3, 0, 4, 9, 5, 9, 3, 2, 9, 6, 6, 8, 6, 6, 8, 2, 7, 4, 7, 5, 1, 9, 3, 4
Offset: 1

Views

Author

Christoph B. Kassir, Dec 11 2021

Keywords

Examples

			1.00277832894710406107696901331408507...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[1] - Cos[1], 10, 100][[1]] (* Amiram Eldar, Dec 11 2021 *)
  • PARI
    cosh(1) - cos(1)

Formula

Equals 2 * Sum_{k>=0} 1/(4*k+2)! = 2 * A334364. - Amiram Eldar, Dec 11 2021

A372338 Decimal expansion of Sum_{k>=0} (k+2) / ((k+1)*(2k)!).

Original entry on oeis.org

2, 8, 0, 7, 3, 2, 1, 7, 5, 2, 4, 7, 2, 3, 5, 9, 1, 3, 5, 2, 8, 6, 8, 5, 8, 0, 8, 0, 4, 3, 4, 1, 3, 9, 9, 4, 7, 7, 0, 9, 9, 0, 6, 8, 5, 0, 3, 0, 2, 3, 2, 8, 0, 3, 5, 7, 2, 1, 7, 2, 8, 6, 1, 1, 3, 1, 5, 8, 4, 6, 0, 7, 1, 5, 5, 9, 4, 2, 4, 0, 9, 2, 2, 4, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Apr 28 2024

Keywords

Examples

			2.8073217524723591352868580804341...
		

Crossrefs

Programs

  • Mathematica
    s = Sum[(k + 2)/((k + 1) (2 k)!), {k, 0, Infinity}]
    d = N[s, 100]
    First[RealDigits[d]]

Formula

Equals -4/e + 2 + 3*cosh(1) - 2*sinh(1).
Equals 2*2F3(1,3; 1/2,2,2; 1/4). - R. J. Mathar, Aug 02 2024
Previous Showing 31-40 of 42 results. Next