A321791
Table read by descending antidiagonals: T(n,k) is the number of unoriented cycles (bracelets) of length n using up to k available colors.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 8, 1, 0, 1, 7, 21, 35, 55, 39, 13, 1, 0, 1, 8, 28, 56, 120, 136, 92, 18, 1, 0, 1, 9, 36, 84, 231, 377, 430, 198, 30, 1, 0
Offset: 0
Table begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 10 ...
0 1 3 6 10 15 21 28 36 45 55 ...
0 1 4 10 20 35 56 84 120 165 220 ...
0 1 6 21 55 120 231 406 666 1035 1540 ...
0 1 8 39 136 377 888 1855 3536 6273 10504 ...
0 1 13 92 430 1505 4291 10528 23052 46185 86185 ...
0 1 18 198 1300 5895 20646 60028 151848 344925 719290 ...
0 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 ...
0 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 ...
0 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 ...
For T(3,3)=10, the unoriented cycles are 9 achiral (AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC) and 1 chiral pair (ABC-ACB).
Cf.
A051137 (ascending antidiagonals).
-
Table[If[k>0, DivisorSum[k, EulerPhi[#](n-k)^(k/#)&]/(2k) + ((n-k)^Floor[(k+1)/2]+(n-k)^Ceiling[(k+1)/2])/4, 1], {n, 0, 12}, {k, 0, n}] // Flatten
A054620
Number of ways to color vertices of a pentagon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 8, 51, 208, 629, 1560, 3367, 6560, 11817, 20008, 32219, 49776, 74269, 107576, 151887, 209728, 283985, 377928, 495235, 640016, 816837, 1030744, 1287287, 1592544, 1953145, 2376296, 2869803, 3442096, 4102253, 4860024
Offset: 0
A054621
Number of ways to color vertices of a heptagon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 20, 315, 2344, 11165, 39996, 117655, 299600, 683289, 1428580, 2783891, 5118840, 8964085, 15059084, 24408495, 38347936, 58619825, 87460020, 127695979, 182857160, 257298381, 356336860, 486403655, 655210224, 871930825, 1147401476, 1494336195, 1927561240
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
I:=[0, 1, 20, 315, 2344, 11165, 39996, 117655]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, Apr 30 2012
-
a:=proc(n) option remember:
if n=0 then 0 elif n=1 then 1 elif n=2 then 20 elif n=3 then 315 elif n=4 then 2344 elif n=5 then 11165 elif n=6 then 39996 elif n=7 then 117655 elif n=8 then 299600 else
8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8): fi: end: seq(a(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2015
-
CoefficientList[Series[x*(1+12*x+183*x^2+328*x^3+183*x^4+ 12*x^5+x^6)/(x-1)^8,{x,0,33}],x] (* Vincenzo Librandi, Apr 30 2012 *)
A054622
Number of ways to color vertices of an octagon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 5381685, 12501280, 26796726, 53750346, 101969959, 184478490, 320367720, 536879176, 871980201, 1377508284, 2122961770, 3200020110, 4727881851, 6859513606, 9788908284, 13759455900
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
I:=[0, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Apr 29 2012
-
CoefficientList[Series[x*(1+27*x+546*x^2+1936*x^3+ 1971*x^4+525*x^5+34*x^6)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 29 2012 *)
A054626
Number of n-bead necklaces with 7 colors.
Original entry on oeis.org
1, 7, 28, 119, 616, 3367, 19684, 117655, 720916, 4483815, 28249228, 179756983, 1153450872, 7453000807, 48444564052, 316504102999, 2077058521216, 13684147881607, 90467424361132, 599941851861751, 3989613329006536, 26597422099282535
Offset: 0
G.f. = 1 + 7*x + 28*x^2 + 119*x^3 + 616*x^4 + 3367*x^5 + 19684*x^6 + ...
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$7))},unlabeled]: seq(count(A,size=n),n=0..21); # Zerinvary Lajos, Dec 05 2007
-
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-7*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=7; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
-
a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*7^(n/d))); \\ Altug Alkan, Sep 21 2018
A054629
Number of n-bead necklaces with 10 colors.
Original entry on oeis.org
1, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044, 9090909100, 83333418520, 769230769240, 7142857857190, 66666666680272, 625000006251280, 5882352941176480, 55555555611222370, 526315789473684220
Offset: 0
G.f. = 1 + 10*x + 55*x^2 + 340*x^3 + 2530*x^4 + 20008*x^5 + 166870*x^6 + ...
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$10))},unlabeled]: seq(count(A,size=n),n=0..19); # Zerinvary Lajos, Dec 05 2007
-
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-10*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=10; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
-
a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*10^(n/d))); \\ Altug Alkan, Sep 21 2018
A054623
Number of ways to color vertices of a 9-gon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889, 111111340, 261994491, 573309320, 1178278205, 2295672484, 4271485135, 7635498336, 13176431825, 22039922460, 35854190179, 56888890680, 88253340581, 134141026580
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n*(n^8+2*n^2+6)/9: n in [0..30]]; // Vincenzo Librandi, Apr 30 2012
-
CoefficientList[Series[x*(1+50*x+1640*x^2+9774*x^3+17390*x^4+9774*x^5+1640*x^6+50*x^7+x^8)/(1-x)^10,{x,0,30}],x] (* Vincenzo Librandi, Apr 29 2012 *)
A054628
Number of n-bead necklaces with 9 colors.
Original entry on oeis.org
1, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 348684381, 2852823609, 23535840225, 195528140649, 1634056945605, 13726075481049, 115813764494505, 981010688215689, 8338590871415805, 71097458824894329, 607883273127192897
Offset: 0
G.f. = 1 + 9*x + 45*x^2 + 249*x^3 + 1665*x^4 + 11817*x^5 + 88725*x^6 + ...
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$9))},unlabeled]: seq(count(A,size=n),n=0..20); # Zerinvary Lajos, Dec 05 2007
-
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-9*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=9; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
-
a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*9^(n/d))); \\ Altug Alkan, Sep 21 2018
A213935
Triangle with entry a(n,m) giving the total number of necklaces of n beads (C_n symmetry) with n colors available for each bead, but only m distinct colors present, with m from {1, 2, ..., n} and n >= 1.
Original entry on oeis.org
1, 2, 1, 3, 6, 2, 4, 24, 36, 6, 5, 60, 300, 240, 24, 6, 180, 1820, 3900, 1800, 120, 7, 378, 9030, 42000, 50400, 15120, 720, 8, 952, 40824, 357420, 882000, 670320, 141120, 5040, 9, 2088, 169512, 2610720, 11677680, 17781120, 9313920, 1451520, 40320, 10, 4770, 673560, 17193960, 128598624, 345144240, 355622400, 136080000, 16329600, 362880
Offset: 1
n\m 1 2 3 4 5 8 7 8 ...
1 1
2 2 1
3 3 6 2
4 4 24 36 6
5 5 60 300 240 24
6 6 180 1820 3900 1800 120
7 7 378 9030 42000 50400 15120 72
8 8 952 40824 357420 882000 670320 141120 5040
...
Row n=9: 9 2088 169512 2610720 11677680 17781120 9313920 1451520 40320.
Row n=10: 10 4770 673560 17193960 128598624 345144240 355622400 136080000 16329600 362880.
a(2,2)=1 from the color monomial c[1]^1*c[2]^1= c[1]*c[2] (from the m=2 partition [1,1] of n=2). The necklace in question is cyclic(12) (we use j for color c[j] in these examples).
a(5,3) = 120 + 180 = 300, from A212360(5,4) + A212360(5,5), because k(5,3,1)=4 and p(5,3)=2.
a(3,1) = 3 from the color monomials c[1]^3, c[2]^3 and c[3]^1. The three necklaces are cyclic(111), cyclic(222) and cyclic(333).
In general a(n,1)=n from the partition [n] providing the color signature (exponent), and the n color choices.
a(3,2) = 6 from the color signature c[.]^2 c[.]^1, (from the m=2 partition [2,1] of n=3), and there are 6 choices for the color indices. The 6 necklaces are cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3) = 2. The color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). All three available colors are used. There are two non-equivalent necklaces: cyclic(1,2,3) and cyclic(1,3,2).
a(4,2) = 24 from two color signatures c[.]^3 c[.] and c[.]^2 c[.]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one produces 4*3=12 necklaces, namely 1112, 1113, 1114, 2221, 2223, 2224, 3331, 3332, 3334, 4441, 4442 and 4443 all taken cyclically. The second color signature leads to another 2*6=12 necklaces: 1122, 1133, 1144, 2233, 2244, 3344, 1212, 1313, 1414, 2323, 2424 and 3434, all taken cyclically. Together they provide the 24 necklaces counted by a(4,2).
A319082
A(n, k) = (1/k)*Sum_{d|k} EulerPhi(d)*n^(k/d) for n >= 0 and k > 0, A(n, 0) = 0, square array read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 5, 10, 11, 6, 1, 0, 0, 6, 15, 24, 24, 8, 1, 0, 0, 7, 21, 45, 70, 51, 14, 1, 0, 0, 8, 28, 76, 165, 208, 130, 20, 1, 0, 0, 9, 36, 119, 336, 629, 700, 315, 36, 1, 0, 0, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 0, 0, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1, 0
Offset: 0
Array starts:
[n\k][0 1 2 3 4 5 6 7 8 9 ...]
[0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
[1] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[2] 0, 2, 3, 4, 6, 8, 14, 20, 36, 60, ...
[3] 0, 3, 6, 11, 24, 51, 130, 315, 834, 2195, ...
[4] 0, 4, 10, 24, 70, 208, 700, 2344, 8230, 29144, ...
[5] 0, 5, 15, 45, 165, 629, 2635, 11165, 48915, 217045, ...
[6] 0, 6, 21, 76, 336, 1560, 7826, 39996, 210126, 1119796, ...
[7] 0, 7, 28, 119, 616, 3367, 19684, 117655, 720916, 4483815, ...
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math. 61 (1986), 181-188.
- H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete Math. 23(3) (1978), 207-210. Reviewed in MR0523071 (80e:05007).
- Peter Luschny, Implementation of the FKM algorithm in SageMath and Julia
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 1992, 414-430.
- Index entries for sequences related to necklaces
Essentially the same table as
A075195.
A054630(n,k) is a subtriangle for n >= 1 and 1 <= k <= n.
-
with(numtheory):
A := (n, k) -> `if`(k=0, 0, (1/k)*add(phi(d)*n^(k/d), d=divisors(k))):
seq(seq(A(n-k, k), k=0..n), n=0..12);
# Alternatively, row-wise printed as a table:
T := (n, k) -> `if`(k=0, 0, add(n^igcd(i, k), i=1..k)/k):
seq(lprint(seq(T(n, k), k=0..9)), n=0..7);
-
A(n,k)=if(k==0, 0, sumdiv(k,d, eulerphi(d)*n^(k/d))/k) \\ Andrew Howroyd, Jan 05 2024
-
def A319082(n, k):
return 0 if k == 0 else (1/k)*sum(euler_phi(d)*n^(k//d) for d in divisors(k))
for n in (0..7):
print([n], [A319082(n, k) for k in (0..9)])
Comments