A178633
a(n) = 54*((10^n - 1)/9)^2.
Original entry on oeis.org
54, 6534, 665334, 66653334, 6666533334, 666665333334, 66666653333334, 6666666533333334, 666666665333333334, 66666666653333333334, 6666666666533333333334, 666666666665333333333334, 66666666666653333333333334, 6666666666666533333333333334, 666666666666665333333333333334
Offset: 1
n = 1: 54 = 9 * 6;
n = 2: 6534 = 99 * 66;
n = 3: 665334 = 999 * 666;
n = 4: 66653334 = 9999 * 6666;
n = 5: 6666533334 = 99999 * 66666;
n = 6: 666665333334 = 999999 * 666666;
n = 7: 66666653333334 = 9999999 * 6666666;
n = 8: 6666666533333334 = 99999999 * 66666666;
n = 9: 666666665333333334 = 999999999 * 666666666.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
A178634
a(n) = 63*((10^n - 1)/9)^2.
Original entry on oeis.org
63, 7623, 776223, 77762223, 7777622223, 777776222223, 77777762222223, 7777777622222223, 777777776222222223, 77777777762222222223, 7777777777622222222223, 777777777776222222222223, 77777777777762222222222223, 7777777777777622222222222223, 777777777777776222222222222223
Offset: 1
n=1: ..................... 63 = 9 * 7;
n=2: ................... 7623 = 99 * 77;
n=3: ................. 776223 = 999 * 777;
n=4: ............... 77762223 = 9999 * 7777;
n=5: ............. 7777622223 = 99999 * 77777;
n=6: ........... 777776222223 = 999999 * 777777;
n=7: ......... 77777762222223 = 9999999 * 7777777;
n=8: ....... 7777777622222223 = 99999999 * 77777777;
n=9: ..... 777777776222222223 = 999999999 * 777777777.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 33 at p. 62.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
-
List([1..20], n -> 63*((10^n - 1)/9)^2); # G. C. Greubel, Jan 28 2019
-
[63*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
-
63((10^Range[15]-1)/9)^2 (* or *) Table[FromDigits[Join[PadRight[{},n,7],{6},PadRight[{},n,2],{3}]],{n,0,15}] (* Harvey P. Dale, Apr 23 2012 *)
-
a(n)=63*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
-
[63*((10^n - 1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
A178635
a(n) = 72*((10^n - 1)/9)^2.
Original entry on oeis.org
72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1
n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
Original entry on oeis.org
0, 4, 484, 49284, 4937284, 493817284, 49382617284, 4938270617284, 493827150617284, 49382715950617284, 4938271603950617284, 493827160483950617284, 49382716049283950617284, 4938271604937283950617284, 493827160493817283950617284, 49382716049382617283950617284
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
-
I:=[0,4,484]; [n le 3 select I[n] else 111*Self(n-1)-1110*Self(n-2)+1000*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 25 2017
-
LinearRecurrence[{111, -1110, 1000}, {0, 4, 484}, 30] (* Vincenzo Librandi, Apr 25 2017 *)
Original entry on oeis.org
0, 16, 1936, 197136, 19749136, 1975269136, 197530469136, 19753082469136, 1975308602469136, 197530863802469136, 19753086415802469136, 1975308641935802469136, 197530864197135802469136, 19753086419749135802469136, 1975308641975269135802469136, 197530864197530469135802469136
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A075414
Squares of A002279: a(n) = (5*(10^n - 1)/9)^2.
Original entry on oeis.org
0, 25, 3025, 308025, 30858025, 3086358025, 308641358025, 30864191358025, 3086419691358025, 308641974691358025, 30864197524691358025, 3086419753024691358025, 308641975308024691358025, 30864197530858024691358025, 3086419753086358024691358025, 308641975308641358024691358025
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
Original entry on oeis.org
0, 49, 5929, 603729, 60481729, 6049261729, 604937061729, 60493815061729, 6049382595061729, 604938270395061729, 60493827148395061729, 6049382715928395061729, 604938271603728395061729, 60493827160481728395061729, 6049382716049261728395061729, 604938271604937061728395061729
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A075417
Squares of A002282: a(n) = (8*(10^n - 1)/9)^2.
Original entry on oeis.org
0, 64, 7744, 788544, 78996544, 7901076544, 790121876544, 79012329876544, 7901234409876544, 790123455209876544, 79012345663209876544, 7901234567743209876544, 790123456788543209876544, 79012345678996543209876544, 7901234567901076543209876544, 790123456790121876543209876544
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A271528
a(n) = 2*(10^n - 1)^2/27.
Original entry on oeis.org
0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0
n=1: 6 = 2 * 3;
n=2: 726 = 22 * 33;
n=3: 73926 = 222 * 333;
n=4: 7405926 = 2222 * 3333;
n=5: 740725926 = 22222 * 33333;
n=6: 74073925926 = 222222 * 333333;
n=7: 7407405925926 = 2222222 * 3333333;
n=8: 740740725925926 = 22222222 * 33333333;
n=9: 74074073925925926 = 222222222 * 333333333, etc.
Cf. similar sequences of the form k*((10^n - 1)/9)^2:
A075411 (k=4), this sequence (k=6),
A075412 (k=9),
A075413 (k=16),
A178630 (k=18),
A075414 (k=25),
A178631 (k=27),
A075415 (k=36),
A178632 (k=45),
A075416 (k=49),
A178633 (k=54),
A178634 (k=63),
A075417 (k=64),
A178635 (k=72),
A059988 (k=81).
-
Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
-
x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
-
for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
# Soumil Mandal, Apr 10 2016
Comments