cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

Original entry on oeis.org

1, 1, 1, 4, -1, 1, 0, 4, -5, 1, 24, -16, 4, -13, 1, -8, 40, -48, 4, -29, 1, 104, -88, 72, -112, 4, -61, 1, -48, 184, -248, 136, -240, 4, -125, 1, 352, -400, 344, -568, 264, -496, 4, -253, 1, 80, 544, -1104, 664, -1208, 520, -1008, 4, -509, 1, 1424, -784, 928, -2512, 1304, -2488, 1032, -2032, 4, -1021, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Examples

			The top left corner of the array:
   n   p_n |k=1,     2, 3,      4,     5,      6,     7,       8,      9,      10
  ---------+----------------------------------------------------------------------
   1 ->  2 |  1,     1, 4,      0,    24,     -8,   104,     -48,    352,      80,
   2 ->  3 |  1,    -1, 4,    -16,    40,    -88,   184,    -400,    544,    -784,
   3 ->  5 |  1,    -5, 4,    -48,    72,   -248,   344,   -1104,    928,   -2512,
   4 ->  7 |  1,   -13, 4,   -112,   136,   -568,   664,   -2512,   1696,   -5968,
   5 -> 11 |  1,   -29, 4,   -240,   264,  -1208,  1304,   -5328,   3232,  -12880,
   6 -> 13 |  1,   -61, 4,   -496,   520,  -2488,  2584,  -10960,   6304,  -26704,
   7 -> 17 |  1,  -125, 4,  -1008,  1032,  -5048,  5144,  -22224,  12448,  -54352,
   8 -> 19 |  1,  -253, 4,  -2032,  2056, -10168, 10264,  -44752,  24736, -109648,
   9 -> 23 |  1,  -509, 4,  -4080,  4104, -20408, 20504,  -89808,  49312, -220240,
  10 -> 29 |  1, -1021, 4,  -8176,  8200, -40888, 40984, -179920,  98464, -441424,
  11 -> 31 |  1, -2045, 4, -16368, 16392, -81848, 81944, -360144, 196768, -883792,
		

Crossrefs

Rows 1-2: A329891, A329892 (from n>=1).
Column 1: A000012, Column 2: -A036563(n) (from n>=1), Column 3: A010709.

Programs

  • PARI
    up_to = 105;
    A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));
    A329637sq(n,k) = ((2^(n+k-1)) - (((2^n)-1) * A329890(k)));
    A329637list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A329637sq(col,(a-(col-1))))); (v); };
    v329637 = A329637list(up_to);
    A329637(n) = v329637[n];

Formula

A(n, k) = A329644(A182944(n, k)).
A(n, k) = A000079(n+k-1) - (A000225(n) * A329890(k)).

A096853 a(n) = A062401(2^n-1).

Original entry on oeis.org

1, 2, 4, 8, 16, 48, 64, 144, 288, 512, 576, 2304, 4096, 10240, 18432, 36288, 65536, 184320, 262144, 552960, 718848, 1492992, 2822400, 9123840, 13418496, 44695552, 68762880, 106168320, 109486080, 580386816, 1073741824, 2155507200, 2366668800, 6920601600, 12081954816
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ EulerPhi[ DivisorSigma[1, 2^n - 1]], {n, 33}]

Formula

a(n) = A000010(A000203(A000225(n))). - Michel Marcus, Dec 19 2013
a(n) = A000010(A075708(n)). - Amiram Eldar, Jun 04 2024

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004
a(33)-a(35) from Amiram Eldar, Jun 04 2024

A103291 Numbers k such that sigma(2^k-1) >= 2*(2^k-1)-1, i.e., the number 2^k-1 is perfect, abundant, or least deficient.

Original entry on oeis.org

1, 12, 24, 36, 40, 48, 60, 72, 80, 84, 90, 96, 108, 120, 132, 140, 144, 156, 160, 168, 180, 192, 200, 204, 210, 216, 220, 228, 240, 252, 264, 270, 276, 280, 288, 300, 312, 320, 324, 330, 336, 348, 360, 372, 384, 396, 400, 408, 420, 432, 440, 444, 450, 456, 468
Offset: 1

Views

Author

Max Alekseyev, Jan 28 2005

Keywords

Comments

Is there an odd term besides 1? Numbers 2^a(i)-1 form set difference of sequences A103289 and A096399.
Odd terms > 1 exist, but there are none < 10^7. If k > 1 is an odd term, then 2^k-1 must have more than 900000 distinct prime factors and all of them must be members of A014663. - David Wasserman, Apr 15 2008

Crossrefs

Programs

  • PARI
    for(i=1,1000,n=2^i-1;if(sigma(n)>=2*n-1,print1(i, ", ")));

Formula

Numbers k such that 2^k-1 is in A103288.

Extensions

More terms from David Wasserman, Apr 15 2008

A329890 a(1) = 1; for n > 1, a(n) = sigma((2^n)-1) - sigma((2^(n-1))-1), where sigma is A000203, the sum of divisors.

Original entry on oeis.org

1, 3, 4, 16, 8, 72, 24, 304, 160, 944, 624, 6576, -544, 14336, 16384, 72544, 19616, 342528, 50688, 1475584, 466176, 3443712, 2657376, 29486880, -3340288, 54808448, 65971360, 306781024, 77647680, 1475408064, 132153344, 5157119680, 3054411072, 12548176896, 13343981568, 130039259136, -28235160128, 228451400256, 269821673472
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2019

Keywords

Crossrefs

From second term onwards, the first differences of A075708.

Programs

  • Mathematica
    Join[{1},Table[DivisorSigma[1,2^n-1]-DivisorSigma[1,2^(n-1)-1],{n,2,40}]] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));

Formula

a(1) = 1; and for n > 1, a(n) = A075708(n) - A075708(n-1).

A329891 a(0) = 0, a(1) = 1, for n > 1, a(n) = 2^n - (sigma((2^n)-1) - sigma((2^(n-1))-1)).

Original entry on oeis.org

0, 1, 1, 4, 0, 24, -8, 104, -48, 352, 80, 1424, -2480, 8736, 2048, 16384, -7008, 111456, -80384, 473600, -427008, 1630976, 750592, 5731232, -12709664, 36894720, 12300416, 68246368, -38345568, 459223232, -401666240, 2015330304, -862152384, 5535523520, 4631692288, 21015756800, -61319782400, 165674113600, 46426506688, 279934140416, -484569911296
Offset: 0

Views

Author

Antti Karttunen, Nov 23 2019

Keywords

Crossrefs

Programs

  • PARI
    A329891(n) = if(n<=1,n,(2^n - sigma((2^n)-1)) + sigma((2^(n-1))-1));

Formula

a(0) = 0; for n >= 1, a(n) = A323244(2^n) - A323244(2^(n-1)) = 2^n - A329890(n).
a(n) = A329644(2^n).

A329892 a(0) = 0, a(1) = 1, for n > 1, a(n) = 2^(n+1) - 3*(sigma((2^n)-1) - sigma((2^(n-1))-1)).

Original entry on oeis.org

0, 1, -1, 4, -16, 40, -88, 184, -400, 544, -784, 2224, -11536, 18016, -10240, 16384, -86560, 203296, -503296, 896512, -2329600, 2795776, -1942528, 8805088, -54906208, 77129728, -30207616, 70521376, -383472160, 840798784, -2278740544, 3898507264, -6881424448, 8016635968, -3284792320, 28687532032, -252678823936, 359583387328, -135598386880
Offset: 0

Views

Author

Antti Karttunen, Nov 23 2019

Keywords

Crossrefs

Programs

  • PARI
    A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));
    A329892(n) = if(!n,n,2^(n+1) - 3*A329890(n));
    
  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A323243(n) = if(1==n, 0, sigma(A156552(n)));
    A329644(n) = sumdiv(n, d, moebius(n/d)*((2*A156552(d))-A323243(d)));
    A329892(n) = A329644(3^n);

Formula

a(n) = A329644(3^n).
a(0) = 0; for n >= 1, a(n) = 2^(n+1) - 3*A329890(n).

A152057 Sum of the distinct prime factors of 2^n-1.

Original entry on oeis.org

0, 0, 3, 7, 8, 31, 10, 127, 25, 80, 45, 112, 28, 8191, 173, 189, 282, 131071, 102, 524287, 91, 471, 798, 178528, 286, 2433, 10925, 262737, 320, 3425, 534, 2147483647, 65819, 599598, 174765, 123150, 266, 616318400, 699053, 129646, 61789, 164524720, 5936
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2008

Keywords

Crossrefs

Row sums of A060443.

Programs

  • Maple
    sopf:= n -> convert(numtheory:-factorset(n),`+`):
    seq(sopf(2^n-1),n=0..100); # Robert Israel, Jan 14 2021
  • Mathematica
    Table[Sum[FactorInteger[2^n - 1][[m]][[1]], {m, 1, Length[FactorInteger[2^n - 1]]}], {n, 0, 50}]

Formula

a(n) = A008472(A000225(n)). - Robert Israel, Jan 14 2021

Extensions

Edited by N. J. A. Sloane, Nov 26 2008

A247938 Sum of divisors of 2^prime(n)-1.

Original entry on oeis.org

4, 8, 32, 128, 2160, 8192, 131072, 524288, 8567136, 539922240, 2147483648, 138055271872, 2199187780272, 8817412930560, 140828559963840, 9008745449302368, 576463955735383776, 2305843009213693952, 147573953351708377936, 2361193635521975063040
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2014

Keywords

Comments

b-file computed with factorizations in Wagstaff link. a(167) corresponding to 2^991-1 is currently the first unknown term. - Jens Kruse Andersen, Sep 28 2014
Conjecture: a(n)/2^prime(n) reaches its maximum value 135/128 at n = 5. - Jianing Song, Dec 31 2022

References

  • R. Bojanić, Asymptotic evaluations of the sum of divisors of certain numbers (in Serbo-Croatian), Bull. Soc. Math.-Phys, R.P. Macédoine, Vol. 5 (1954), pp. 5-15.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 96.

Crossrefs

Subsequence of A075708.

Programs

  • Magma
    [SumOfDivisors(2^p-1): p in PrimesUpTo(100)];
    
  • Maple
    with(numtheory): A247938:=n->sigma(2^ithprime(n)-1): seq(A247938(n), n=1..20); # Wesley Ivan Hurt, Sep 27 2014
  • Mathematica
    Table[DivisorSigma[1, 2^Prime[n]-1], {n, 30}]
  • PARI
    vector(50,n,sigma(2^prime(n)-1)) \\ Derek Orr, Sep 27 2014

Formula

a(n) = A000203(A001348(n)). - Michel Marcus, Sep 27 2014
Limit_{n->oo} a(n)/A001348(n) = 1 (Bojanić, 1954). - Amiram Eldar, Mar 04 2021
Previous Showing 11-18 of 18 results.