A331608
E.g.f.: exp(1 / (1 - sinh(x)) - 1).
Original entry on oeis.org
1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A097236
Number of hierarchical orderings ("societies") with at least 2 elements ("individuals") on each level for n labeled elements.
Original entry on oeis.org
0, 1, 1, 10, 31, 271, 1534, 14393, 117653, 1253524, 13140557, 160679069, 2026451948, 28278471729, 413532314433, 6516434058758, 107958571213579, 1899723866781859, 35092386753388698, 682552407940860353, 13893916425860413469, 296049402365644855888
Offset: 1
a(4) = 10. Let : denote the partition of n labeled individuals 1,2,3,4 into x=2 sets (i.e. "societies"). E.g., in 12:34 one has a single society with members 1 and 2 and a further single society with members 3 and 4. Let | denote a higher level (within a single society), e.g., in 1|2 the individual 2 is one level up with respect to individual 1. The order of individuals on a level is insignificant, e.g. 12|34 is equivalent to 21|43.
For n = 4 and x = 2 one has 1234; 12:34; 13:24; 14:23; 12|34; 31|42; 43|21; 24|13; 21|34; 43|12; which gives 10 different hierarchical societies with at least 2 labeled individuals per level.
-
with(combstruct); SetSeqSetxL:=[T,{T=Set(S), S=Sequence(U,card>=1), U=Set(Z,card >= 2)},labeled];
# where x is an integer 1, 2, 3,... ; x=2 gives 2 individuals per level.
seq (count (SetSeqSetxL,size=j), j=1..20);
-
terms = 22;
CoefficientList[ Exp[-(-Exp[z]+1+z)/(2-Exp[z]+z)] + O[z]^(terms+1), z] * Range[0, terms]! // Rest (* Jean-François Alcover, Aug 06 2018 *)
A143463
Number of multiple hierarchies for n labeled elements.
Original entry on oeis.org
1, 4, 20, 133, 1047, 9754, 103203, 1229330, 16198452, 234110702, 3675679471, 62287376870, 1132138152251, 21963847972941, 452786198062541, 9881445268293457, 227522503290656371, 5510876754647261442, 140040543831299600637, 3724688873146823853387
Offset: 1
Let "|" separate two hierarchies. Then we have
n=1 gives 1 arrangement:
1
n=2 gives 4 arrangements:
1,2 1:2 2:1 1|2
n=3 gives 20 arrangements:
1,2,3 1,2:3 1:2:3 1,2|3 1:2|3 1|2|3
1,3:2 3:1:2 1,3|2 1:3|2
2,3:1 2:3:1 2,3|1 2:3|1
1:3:2 2:1|3
2:1:3 3:1|2
3:2:1 3:2|1
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..430 (first 200 terms from Alois P. Heinz)
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [From _Thomas Wieder_, Nov 14 2009]
-
A143463:=proc(n::integer)
# Begonnen am: 14.08.2008
# Letzte Aenderung: 14.08.2008
# Subroutines required: ListeMengenzerlegungenAuf, A005651.
local iverbose, Liste, Zerlegungen, Zerlegung, Produkt, Summe, Untermenge, ZahlElemente;
iverbose:=0;
Liste:=[seq( i, i=1..n )];
Zerlegungen:=ListeMengenzerlegungenAuf(Liste);
Summe:=0;
if iverbose=1 then
print("Zerlegungen: ",Zerlegungen);
end if;
for Zerlegung in Zerlegungen do
Produkt:=1;
if iverbose=1 then
print("Zerlegung: ",Zerlegung);
end if;
# Eine Zerlegung besteht aus Untermengen.
for Untermenge in Zerlegung do
ZahlElemente:=nops(Untermenge);
Produkt:=Produkt*A005651(ZahlElemente);
if iverbose=1 then
print("Untermenge: ",Untermenge,"A005651(ZahlElemente)",A005651(ZahlElemente));
end if;
# Ende der Schleife in der Zerlegung.
od;
Summe:=Summe+Produkt;
# Ende der Schleife ueber die Zerlegungen.
od;
print("Resultat:",Summe);
end proc;
A143463 := proc(n::integer) local k,A005651,Resultat; A005651:=array(1..20): A005651[1]:=1: A005651[2]:=3: A005651[3]:=10: A005651[4]:=47: A005651[5]:=246: A005651[6]:=1602: A005651[7]:=11481: A005651[8]:=95503: A005651[9]:=871030: A005651[10]:=8879558: A005651[11]:=98329551: A005651[12]:=1191578522: A005651[13]:=15543026747: A005651[14]:=218668538441: A005651[15]:=3285749117475: A005651[16]:=52700813279423: A005651[17]:=896697825211142: A005651[18]:=16160442591627990: A005651[19]:=307183340680888755: A005651[20]:=6147451460222703502: if n = 0 then Resultat:=1: RETURN(Resultat); end if; Resultat:=0: for k from 1 to n do Resultat:=Resultat+(A143463(n-k)*A005651[k])/((n-k)!*(k-1)!): od; Resultat:=Resultat*(n-1)!; RETURN(Resultat); end proc; [From Thomas Wieder, Sep 09 2008]
# second Maple program:
with(numtheory):
b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end:
c:= proc(n) option remember; `if`(n=0, 1,
add((n-1)!/ (n-k)!* b(k) * c(n-k), k=1..n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
c(n) +add(binomial(n-1, k-1) *c(k) *a(n-k), k=1..n-1))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Oct 10 2008
-
nmax=20; Rest[CoefficientList[Series[Exp[Product[1/(1-x^k/k!),{k,1,nmax}]-1],{x,0,nmax}],x] * Range[0,nmax]!] (* Vaclav Kotesovec, May 11 2015 *)
A331611
E.g.f.: exp(1 / (2 - cosh(x)) - 1) (even powers only).
Original entry on oeis.org
1, 1, 10, 241, 10585, 732826, 73233205, 9955632961, 1764233731270, 394629336427021, 108652463882802505, 36084903957564392206, 14217903951354603567385, 6554505383225768210009041, 3493988190176442653240091010, 2131975894217009666242489287001
Offset: 0
-
nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Cosh[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A094088[0] = 1; A094088[n_] := A094088[n] = Sum[Binomial[2 n, 2 k] A094088[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A094088[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A075744
Hierarchies of hierarchies.
Original entry on oeis.org
1, 1, 5, 36, 338, 3898, 53173, 835992, 14864340, 294606273, 6434871231, 153473830678, 3966604562709, 110386840008838, 3289768253831145, 104502173165838799, 3523895395660532937, 125689588963370029163, 4726867751402704638366, 186902021178952943036080
Offset: 0
-
m = 20;
f[x_] = Exp[1/(2 - Exp[x]) - 1];
CoefficientList[Exp[f[x] - 1] + O[x]^m, x]*Range[0, m - 1]! (* Jean-François Alcover, Feb 24 2019 *)
A089378
Number of one-step transitions between all unlabeled hierarchies of n elements.
Original entry on oeis.org
0, 6, 24, 104, 382, 1414, 4870
Offset: 1
Consider the unlabeled hierarchies for n = 3 elements. Take for example H1 = [1,2] and H2 = [1,1,1]. A one-step transition is possible between H1 and H2 by moving one element of the second level (occupied by two elements) of H1 on the third level, which gives H2.
As a counterexample, consider H1 and H3 = [[1], [1], [1]]. H3 consists of three subhierarchies. In order to get from H1 to H3 one needs to move two elements; no one-step transition is possible.
A109092
Number of hierarchical orderings for n labeled elements with 2 possible classes A and B for levels l>=2. Labeled analog of A104460.
Original entry on oeis.org
1, 6, 53, 619, 8972, 155067, 3109269, 70893872, 1810283331, 51151579619, 1583934062306, 53322541667501, 1938521128765093, 75673000809822670, 3156390306304019025, 140076451219218605087, 6589244960448222899044, 327461842184597424792623, 17141751726301435708168665
Offset: 1
Let | denote a separator among different hierarchies of the hierarchical ordering. Let : denote a separator between levels in a hierarchy.
Furthermore, let a[1], a[2],... denote labeled elements.
An element a[i] will be written as a[i,A] if it falls into class A and as a[i,B] if it falls into class B. Note that at level l=1 no classes appear.
Then a(2) = 6 because a[1]a[2], a[1]|a[2], a[1]:a[2,A], a[2]:a[1,A], a[1]:a[2,B], a[2]:a[1,B].
- Alois P. Heinz, Table of n, a(n) for n = 1..140
- Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134. See Example 2.
- Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
-
with(combstruct): A109092 := [T, {T=Set(Sequence(S,card>=1)), S=Sequence(U,card>=1), U=Set(Z,card>=1)},labeled]; seq(count(A109092, size=j), j=1..20);
-
With[{nn=20},CoefficientList[Series[Exp[-(Exp[x]-1)/(-3+2Exp[x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 16 2016 *)
A109186
Number of hierarchical orderings of n unlabeled elements where levels are clustered. Labeled analog of A104525.
Original entry on oeis.org
1, 5, 36, 340, 3968, 55045, 883578, 16092772, 327632793, 7369013917, 181373908752, 4847134062319, 139729893353690, 4320778186663065, 142630863311312977, 5005242986601625051, 186036975046460920033, 7299970808014926301354, 301529053235119043206790
Offset: 1
a(2) = 5 because [a_{1}a_{2}], [a_{1}]:[a_{2}], [a_{2}]:[a_{1}], [a_{1}]|[a_{2}], [a_{1}][a_{2}].
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
-
Test := [T, {T=Set(S,card>=1), S=Sequence(Set(U,card>=1),card>=1), U=Set(Z,card>=1)}, labeled]; seq(count(Test,size=j),j=1..20);
A136722
Number of preferential arrangements (or hierarchical orderings) on the connected graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 8, 48, 336, 3584, 54592, 1422976, 66836480, 5998884352, 1030861378560, 335994532814848, 206175878632321024, 237596569295651315712, 514414692643000188272640, 2096154545790162572944244736, 16113456361117058761983824232448, 234269143891823701379016369973493760
Offset: 0
There are A001349(3)=2 connected graphs for n=3 unlabeled elements:
The chain
o-o-o
and the triangle
. o
/..\
o - o.
There are a(3)=8 hierarchical orders on these two graphs.
The chain gives us 6 orderings:
o-o-o
o
|
o-o
. o
/..\
o . o
o . o
.\./
. o
o-o
|
o
o
|
o
|
o
The triangle gives us two orderings:
. o
/..\
o - o
o - o
\../
. o
-
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A136722(n):
if n == 0: return 1
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n<Chai Wah Wu, Jul 03 2024
A354290
Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(3 - 2*exp(x)).
Original entry on oeis.org
1, 2, 14, 142, 1878, 30494, 585398, 12946910, 323717622, 9020101470, 276940926646, 9283709731806, 337237965060982, 13191050077634654, 552593521885522486, 24677110613547498718, 1169994350288769049334, 58684818937875321715038
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1)/(3-2*exp(x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
Comments