cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A354291 Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(4 - 3*exp(x)) = e.g.f. for A032033.

Original entry on oeis.org

1, 3, 30, 435, 8211, 190056, 5196099, 163541055, 5815620696, 230350071189, 10048990989747, 478467217544322, 24678559536271581, 1370217125170670367, 81457311857722336614, 5160975525978898855143, 347090708803947931122807, 24690132231344937537382560
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*(exp(x)-1)/(4-3*exp(x)))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*stirling(j, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A032033(k) * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 3^k * A000262(k) * Stirling2(n,k).
a(n) ~ exp(-7/8 - n + 1/(8*log(4/3)) + sqrt(n/log(4/3))) * n^(n - 1/4) / (2*log(4/3)^(n + 1/4)). - Vaclav Kotesovec, May 23 2022

A088729 Matrix product of Stirling2-triangle A008277(n,k) and unsigned Lah-triangle |A008297(n,k)|.

Original entry on oeis.org

1, 3, 1, 13, 9, 1, 75, 79, 18, 1, 541, 765, 265, 30, 1, 4683, 8311, 3870, 665, 45, 1, 47293, 100989, 59101, 13650, 1400, 63, 1, 545835, 1362439, 960498, 278901, 38430, 2618, 84, 1, 7087261, 20246445, 16700545, 5844510, 1012431, 92610, 4494, 108, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2003

Keywords

Comments

Also the Bell transform of A000670(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
Also the number of k-dimensional flats of the n-dimensional Catalan arrangement. - Shuhei Tsujie, May 05 2019

Crossrefs

Cf. A000670(first column), A075729(row sums).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> add(combinat:-eulerian1(n+1, k)*2^k, k=0..n+1), 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, HurwitzLerchPhi[1/2, -n-1, 0]/2], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 27 2018, after Peter Luschny *)

Formula

E.g.f.: exp((exp(x)-1)*y/(2-exp(x))).

A099880 Number of preferential arrangements (or simple hierarchies) of 2*n labeled elements with two kinds of elements (where each kind has n elements).

Original entry on oeis.org

1, 2, 18, 260, 5250, 136332, 4327092, 162309576, 7024896450, 344582629820, 18890850749628, 1144656941236536, 75963981061424820, 5479642938171428600, 426894499408073653800, 35720957482170932284560, 3195135789350678836128450, 304234032845362459798904220
Offset: 0

Views

Author

Thomas Wieder, Nov 02 2004

Keywords

Comments

The unlabeled case seems to be given by A003480, which can be generated by the following combstruct command: SeqUnionU := [S, {S=Sequence(Set(U,card>=1), card>=1), U=Union(a,b), a=Atom, b=Atom},unlabeled]; [seq(count(SeqUnionU, size=n), n=0..20)]; .

Examples

			Let a[1], a[2],...,a[n] and b[1],b[2],...,b[n] denote two kinds "a" and "b" of labeled elements where each kind as n elements in total.
Let ":" denote a level, e.g., if the elements a[1] and a[2] are on level L=1 and the element b[1] is on level L=2 then a[1]a[2]:b[1] is a preferrential arrangement (a simple hierarchy) with two levels.
Then for n=2 we have a(2) = 18 arrangements: a[1]a[2]; a[1]:a[2]; a[2]:a[1]; a[1]b[1]; a[1]:b[1]; b[1]:a[1]; a[1]b[2]; a[1]:b[2]; b[2]:a[1]; a[2]b[1]; a[2]:b[1]; b[1]:a[2]; a[2]b[2]; a[2]:b[2]; b[2]:a[2]; b[1]b[2]; b[1]:b[2]; b[2]:b[1].
		

Crossrefs

Programs

  • Maple
    a:=n-> add(binomial(2*n, n)*(Stirling2(n, k))*k!, k=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Oct 19 2006
    # second Maple program:
    b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end:
    a:= n-> b(n)*(2*n)!/n!:
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    f[n_] := Sum[l! StirlingS2[n, l] Binomial[2n, n], {l, n}]; Table[ f[n], {n, 0, 16}] (* Robert G. Wilson v, Nov 04 2004 *)

Formula

a(n) = binomial(2*n, n) * Sum_{k=0..n} k! * Stirling2(n, k).
a(n) = binomial(2*n, n) * A000670(n).
a(n) = A154921(2n,n). - Mats Granvik, Feb 07 2009

Extensions

More terms from Robert G. Wilson v, Nov 04 2004
a(0) corrected and edited by Alois P. Heinz, Feb 03 2019

A109509 Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 47, 88, 152, 279, 486, 876, 1539, 2744, 4824, 8551, 15023, 26503, 46509, 81747, 143210, 251007, 438915, 767403, 1339487, 2336955, 4071906, 7090589, 12333894, 21440241, 37235775, 64624267, 112067176, 194209732, 336313393, 582019000
Offset: 0

Views

Author

Thomas Wieder, Jun 30 2005

Keywords

Comments

A109509 is the Euler transform of the right-shifted Fibonacci numbers A000045.

Examples

			Let * denote an unlabeled element.
Let | denote a delimiter between two hierarchies. E.g., for n=3 we have in **|* two hierarchies (each with one level only).
Let : denote a higher level (within a single hierarchy). E.g., for n=6 we have in ***:**:* a single hierarchy distributed over three levels.
Then a(5) = 4 because we have *****, ***:**, **:***, **|***.
		

Crossrefs

Programs

  • Maple
    SeqSetSetxU := [T, {T=Set(S),S=Sequence(U,card>=1),U=Set(Z,card>=2)},unlabeled]; seq(count(SeqSetSetxU,size=j),j=1..25); # where x is an integer 1, 2, 3,... # x=2 gives 2 individuals per level.
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k-1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 06 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n-1)))

Formula

a(n) ~ phi^(n-1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 1/2 + 2*5^(-1/4)*sqrt(n/phi) + s), where s = Sum_{k>=2} 1/((phi^(2*k) - phi^k - 1)*k) = 0.189744799982532613329750744326543900883761701983311537716143669... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Extensions

Edited with more terms from Franklin T. Adams-Watters, Oct 21 2009

A110045 Number of hierarchical orderings ("societies") of n unlabeled elements ("individuals") with at least two occupied levels.

Original entry on oeis.org

1, 0, 1, 3, 8, 18, 45, 102, 245, 565, 1324, 3049, 7066, 16199, 37187, 84887, 193532, 439600, 996818, 2253941, 5086980, 11454778, 25746467, 57756522, 129342179, 289153474, 645399011, 1438308839, 3200671082, 7112360474, 15783402471, 34980122720, 77428353682
Offset: 0

Views

Author

Thomas Wieder, Jul 09 2005

Keywords

Comments

Unlabeled analog of A097237.
Primes in this sequence include: a(3) = 3, a(11) = 3049, a(19) = 2253941, a(22) = 25746467. Semiprimes in this sequence include: a(9) = 565 = 5 * 113, a(12) = 7066 = 2 * 3533, a(13) = 16199 = 97 * 167, a(14) = 37187 = 41 * 907, a(15) = 84887 = 11 * 7717, a(18) = 996818 = 2 * 498409, a(24) = 129342179 = 23 * 5623573, a(30) = 15783402471 = 3 * 5261134157. - Jonathan Vos Post, Jul 10 2005

Examples

			Let * denote an unlabeled element.
Let : denote a delimiter between two levels of a hierarchy.
Let | denote a delimiter between two subhierarchies.
a(4) = 8 because we have *:*:*:*, ***:*, **:*:*, *:*|*:*, *:***, **:**, *:**:*, *:*:**.
		

Crossrefs

Programs

  • Maple
    SetSeqXSetU := [S, {S=Set(U), U=Sequence(V,card>=2),V=Set(Z,card>=1)},unlabeled]; seq(count(SetSeqXSetU,size=j),j=0..30); #where x is an integer 1, 2, 3,... # x=2 gives 2 levels per society.
  • Mathematica
    nmax = 40; CoefficientList[Series[E^Sum[x^(2*k)/(k*(1 - x^k)*(1 - 2*x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 08 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(2^(k-1)-1). - Ilya Gutkovskiy, Jun 07 2018
a(n) ~ 2^n * exp(sqrt(2*n) - 5/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} 1/(k*(2^k-1)*(2^k-2)) = 0.0927294481510243482503144824759369647388... - Vaclav Kotesovec, Jun 08 2018

A136723 Number of preferential arrangements (or hierarchical orderings) on the connected graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 3, 52, 2850, 393848, 125054832, 88260845008, 137304025714320, 469859118159233792, 3527181890877230433408, 57833314494643038031674112, 2060645597746315164145860149760, 158727775101107953869596632383822848, 26301662700662611321804753231934678909952
Offset: 0

Views

Author

Thomas Wieder, Jan 19 2008; corrected Jan 19 2008

Keywords

Comments

Figure n3 demonstrates all 4*13=52 hierarchical orderings on n=3 connected points. In addition, the pink pictures describe the 10 cases where not all or no points are connected.

Examples

			There is A001187(2)=1 connected graph for n=2 labeled elements: The chain 1-2.
The chain gives us 3 hierarchical orderings:
1-2
1
|
2
2
|
1
		

Crossrefs

Formula

a(n) = A001187(n)*A000670(n);

Extensions

Offset corrected by Alois P. Heinz, Dec 16 2014

A256549 Triangle read by rows, T(n,k) = {n,k}*h(k), where {n,k} are the Stirling set numbers and h(k) = hypergeom([-k+1,-k],[],1), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 9, 13, 0, 1, 21, 78, 73, 0, 1, 45, 325, 730, 501, 0, 1, 93, 1170, 4745, 7515, 4051, 0, 1, 189, 3913, 25550, 70140, 85071, 37633, 0, 1, 381, 12558, 124173, 526050, 1077566, 1053724, 394353, 0, 1, 765, 39325, 567210, 3482451, 10718946, 17386446, 14196708, 4596553
Offset: 0

Views

Author

Peter Luschny, Apr 12 2015

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 1,  3]
[0, 1,  9,   13]
[0, 1, 21,   78,   73]
[0, 1, 45,  325,  730,  501]
[0, 1, 93, 1170, 4745, 7515, 4051]
		

Crossrefs

Programs

  • Sage
    A000262 = lambda n: simplify(hypergeometric([-n+1, -n], [], 1))
    A256549 = lambda n,k: A000262(k)*stirling_number2(n,k)
    for n in range(7): [A256549(n,k) for k in (0..n)]

Formula

Row sums are A075729.
Alternating row sums are the signed Bell numbers (-1)^n*A000110(n).
T(n,k) = A048993(n,k)*A000262(k).
T(n,n) = A000262(n).
T(n+2,2) = A068156(n).

A355720 Expansion of e.g.f. exp( x/(2 - exp(x)) ).

Original entry on oeis.org

1, 1, 3, 16, 113, 986, 10237, 123096, 1680737, 25668766, 433329461, 8009178596, 160802065393, 3483842906610, 80992799730221, 2010720004254856, 53081510001375041, 1484613248976841958, 43846812123456425221, 1363477059263944382604
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(2-exp(x)))))
    
  • PARI
    a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a000670(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A052882(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n^(n - 1/4) * exp(sqrt(2*n) - 1/4 - n) / (sqrt(2) * log(2)^n). - Vaclav Kotesovec, Jul 15 2022

A075756 Number of hierarchies of hierarchies of hierarchies on n points.

Original entry on oeis.org

1, 1, 6, 52, 588, 8174, 134537, 2554647, 54909468, 1316675221, 34820961457, 1006230148609, 31529224324159, 1064355502971193, 38497326001639439, 1484865225798412485, 60822449267067095601, 2636248249383130776940, 120520100503562054999860, 5794815395039941996204424
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20;
    f[x_] = E^(-1 + E^(-1 + 1/(2 - E^x)));
    CoefficientList[Exp[f[x] - 1] + O[x]^m, x]*Range[0, m - 1]! (* Jean-François Alcover, Feb 24 2019 *)

Formula

E.g.f.: exp(f(x)-1) where f(x) = e.g.f. for A075744.

A104533 E.g.f.: exp(2x/(1-2x)).

Original entry on oeis.org

1, 2, 12, 104, 1168, 16032, 259264, 4817024, 100954368, 2353435136, 60355677184, 1687701792768, 51077784506368, 1662782678736896, 57917727119818752, 2148722382829027328, 84569896954751942656, 3518839711497761980416, 154306731918073225019392
Offset: 0

Views

Author

Thomas Wieder, Mar 13 2005

Keywords

Comments

Number of hierarchical orderings for n labeled elements (see A075729) when there are two kinds A and B of elements.

Examples

			Let "a_i" and "b_j" be elements situated in the classes A and B with _i and _j as labels. Let : denote a separator among levels (ranks). Let | denote a separator among groups. E.g., a_1:b_2|b_1 is a hierarchy composed of two groups which contain three elements in total.
a(2) = 12 from b_2:b_1, b_2:a_1, b_2|b_1, a_1:a_2, b_2:a_1, a_1|a_2, a_1:b_2, a_2:a_1, b_1:a_2, a_2:b_1, b_1|a_2, b_2:b_1.
		

Crossrefs

Equals 2^n * A000262(n).

Programs

  • Maple
    SetSeqUnnL := [T, {T=Set(S,card>=1), S=Sequence(U,card>=1), U=Union(a,b),a=Atom, b=Atom},labeled]; seq(count(SetSeqUnnL,size=j),j=1..20);
    A104533 := proc(n::integer) local i,j,prttnlst,prttn,liste,ZahlVerschiedenerTeile,H,Mltplztt; Mltplztt:=vector[1000]; prttnlst:=partition(n); H := 0; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; liste := convert(prttn,multiset); ZahlVerschiedenerTeile := nops(liste); for j from 1 to ZahlVerschiedenerTeile do Mltplztt[j] := op(2,op(j,liste)); od; H := H + (n!/mul(Mltplztt[j]!,j=1..ZahlVerschiedenerTeile)) * 2^n; od; print(n,H); end proc;
  • Mathematica
    CoefficientList[Exp[2 x/(1 - 2 x)] + O[x]^21, x]*Range[0, 20]!
    (* or: *)
    a[0] = 1; a[n_] := 2^n*n!*Hypergeometric1F1[n + 1, 2, 1]/E;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 10 2017 *)

Formula

a(n) = 2^n*A000262(n) = 2^n*n!*Sum_{k=0..n} C(n-1,k)/(k+1)!. - Paul Barry, Apr 28 2007
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i and prod_{j=1}^{d(i)} = product over j one has: a(n)=sum_{i=1}^{p(n)} n!/(prod_{j=1}^{d(i)} m(i, j)!) * 2^(n)
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)*(1-2*x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 09 2013
E.g.f.: E(0) - 1, where E(k) = 2 + 2*x/((2*k+1)*(1-2*x) - 2*x/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 31 2013

Extensions

Edited by N. J. A. Sloane, May 06 2008, at the suggestion of Joerg Arndt
Previous Showing 21-30 of 31 results. Next