cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A135352 Period 5: repeat [1,2,2,1,3].

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3
Offset: 1

Views

Author

Roger L. Bagula, Feb 16 2008

Keywords

Comments

This sequence (if extended to be bi-infinite) is the quiddity sequence of the unique width-5 Coxeter frieze pattern A139434; equivalently, if one goes around the (uniquely) triangulated regular pentagon and sequentially looks at its vertices, counting the number of triangles incident with each vertex, then this sequence will be obtained. - Andrey Zabolotskiy, May 04 2023

Crossrefs

Extensions

Edited by Joerg Arndt, Oct 11 2016
Initial term 1 removed by Joerg Arndt, May 04 2023

A105737 For n>2, a(n) > 0 is such that a(n-1)^2+4*a(n-2)*a(n) is a minimal square, a(1)=1,a(2)=4.

Original entry on oeis.org

1, 4, 5, 6, 8, 8, 6, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2
Offset: 1

Views

Author

Zak Seidov, Apr 19 2005

Keywords

Comments

The sequence depends on seed terms a(1) and a(2); if a(1)=1, a(3)=a(2)+1. All(?) sequences end with cycle={1,2,3,2,1} (or {2,4,6,4,2}, which essentially the same cycle) of length=5. This particular sequence does not merge with A076839 or A105736 and ends with another cycle {2,4,6,4,2}.

Crossrefs

Extensions

More terms from Ray Chandler, May 17 2024

A335688 Numerator of b(n), where b(1)=b(2)=1, and for n>2, b(n) = (1+b(n-2))/b(n-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 6, 5, 126, 115, 297108, 1370225, 200590993732752, 531984953824739375, 27113273919595441588692453206842987776, 56653874513318656544104537473266204894369805859375
Offset: 1

Views

Author

N. J. A. Sloane, Jul 17 2020

Keywords

Comments

With a tiny change in subscripts {b(n)} becomes the Lyness 5-cycle, a sequence of period 5, as illustrated in A076839.

Examples

			1, 1, 2, 1, 3, 2/3, 6, 5/18, 126/5, 115/2268, 297108/575, 1370225/673840944, 200590993732752/787879375, ...
		

Crossrefs

A335689 Denominator of b(n), where b(1)=b(2)=1, and for n>2, b(n) = (1+b(n-2))/b(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 18, 5, 2268, 575, 673840944, 787879375, 135166424574775691397888, 419139972928839518312890625, 3664804294228230129440232448667132628447640073019295936217088, 23745903429826252844483444331595197466499151820665748466452878317718505859375
Offset: 1

Views

Author

N. J. A. Sloane, Jul 17 2020

Keywords

Comments

With a tiny change in subscripts {b(n)} becomes the Lyness 5-cycle, a sequence of period 5, as illustrated in A076839.

Examples

			1, 1, 2, 1, 3, 2/3, 6, 5/18, 126/5, 115/2268, 297108/575, 1370225/673840944, 200590993732752/787879375, ...
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,(1+a)/b}; NestList[nxt,{1,1},20][[;;,1]]//Denominator (* Harvey P. Dale, Sep 20 2023 *)

A064268 a(n) = (a(n-1) * a(n-6) + 2 * a(n-3) * a(n-4)) / a(n-7). a(1) = ... = a(7) = 1. Somos-7 variation.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 13, 43, 113, 521, 1241, 3681, 23657, 177721, 679505, 4674203, 27273277, 275517767, 3496390229, 37043734803, 226196947873, 4391322667601, 81041508965617, 1433151398896001, 25397505914206225, 472652420405241521, 9156799134584424289, 499597377081528480243
Offset: 1

Views

Author

Michael Somos, Sep 24 2001

Keywords

Comments

In general, suppose a(n)*a(n-7) = c1*a(n-1)*a(n-6) + c2*a(n-3)*a(n-4) for all n and constants c1,c2. Define u(n) = a(n)*a(n+5)/(a(n+2)*a(n+3)) which satisfies the generalized Lyness recursion u(n) = (c1*u(n-1) + c2)/u(n-2) for all n. For this sequence c1=1, c2=2, u(n) is (1, 1, 3, 5, 7/3, 13/15, 43/35, ...) and satisfies u(n) = (u(n-1) + 2)/u(n-2). See A076839 for Lyness references. - Michael Somos, Sep 26 2022

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + 2*Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==1,a[n] == (a[n-1]a[n-6]+2a[n-3]a[n-4])/a[n-7]},a,{n,30}] (* Harvey P. Dale, Nov 26 2015 *)
  • PARI
    {a(n) = if( n<1, a(8-n), if( n<8, 1, (a(n-1) * a(n-6) + 2 * a(n-3) * a(n-4)) / a(n-7)))};
    
  • PARI
    { a7=a6=a5=a4=a3=a2=a1=a=1; for (n=1, 100, if (n>7, a=(a1*a6 + 2*a3*a4)/a7; a7=a6; a6=a5; a5=a4; a4=a3; a3=a2; a2=a1; a1=a); write("b064268.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 10 2009
    

Formula

a(8-n) = a(n).

A076824 Let a(1)=a(2)=1, a(n)=(2^ceiling(a(n-1)/2)+1)/a(n-2).

Original entry on oeis.org

1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3, 1, 1, 3, 5, 3
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2002

Keywords

Crossrefs

Cf. A076839.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1},{1, 1, 3, 5, 3},105] (* Ray Chandler, Aug 25 2015 *)
    nxt[{a_,b_}]:={b,(2^Ceiling[b/2]+1)/a}; NestList[nxt,{1,1},110][[;;,1]] (* or *) PadRight[{},120,{1,1,3,5,3}] (* Harvey P. Dale, Jun 09 2025 *)

Formula

5-periodic with period (1, 1, 3, 5, 3)

A105745 For n>2, a(n) > 0 is such that a(n-1)^2+4*a(n-2)*a(n) is a minimal square, a(1)=1, a(2)=12.

Original entry on oeis.org

1, 12, 13, 4, 9, 9, 4, 5, 6, 8, 8, 6, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4
Offset: 1

Views

Author

Zak Seidov, Apr 19 2005

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 1: A[2]:= 12:
    for n from 3 to 100 do
      R:= map(rhs@op, [msolve(y^2=A[n-1]^2, 4*A[n-2])]);
      ys:= map(t -> (floor((A[n-1]-t)/(4*A[n-2]))+1)*4*A[n-2]+t, R);
      A[n]:= (min(ys)^2-A[n-1]^2)/(4*A[n-2]);
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 02 2020
  • Mathematica
    LinearRecurrence[{0,0,0,0,1},{1,12,13,4,9,9,4,5,6,8,8,6,2,4,6,4,2},100] (* or *) PadRight[{1,12,13,4,9,9,4,5,6,8,8,6},100,{4,2,2,4,6}] (* Harvey P. Dale, May 01 2025 *)

Formula

a(n)=a(n-5) for n >= 18. - Robert Israel, Oct 02 2020
G.f.: x*(4*x^16 + 4*x^15 + 2*x^14 + 2*x^13 + 3*x^12 - 2*x^11 + x^10 + x^9 - 2*x^8 + 8*x^7 + 8*x^6 - 8*x^5 - 9*x^4 - 4*x^3 - 13*x^2 - 12*x - 1)/(x^5 - 1). - Chai Wah Wu, May 07 2024

Extensions

More terms from Robert Israel, Oct 02 2020

A105738 For n>2, a(n) > 0 is such that a(n-1)^2+4*a(n-2)*a(n) is a minimal square, a(1)=1,a(2)=5.

Original entry on oeis.org

1, 5, 6, 8, 8, 6, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2
Offset: 1

Views

Author

Zak Seidov, Apr 19 2005

Keywords

Comments

The sequence depends on seed terms a(1) and a(2); if a(1)=1, a(3)=a(2)+1. All(?) sequences end with cycle={1,2,3,2,1} (or {2,4,6,4,2}, which essentially the same cycle) of length = 5. This particular sequence merges with A105737, starting with 2nd term = 5.

Crossrefs

Extensions

More terms from Ray Chandler, May 17 2024

A105739 For n>2, a(n) > 0 is such that a(n-1)^2+4*a(n-2)*a(n) is a minimal square, a(1)=1,a(2)=6.

Original entry on oeis.org

1, 6, 7, 3, 4, 4, 3, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1
Offset: 1

Views

Author

Zak Seidov, Apr 19 2005

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, May 17 2024

A105740 For n>2, a(n) > 0 is such that a(n-1)^2+4*a(n-2)*a(n) is a minimal square, a(1)=1,a(2)=7.

Original entry on oeis.org

1, 7, 8, 12, 8, 4, 4, 3, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2
Offset: 1

Views

Author

Zak Seidov, Apr 19 2005

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, May 17 2024
Previous Showing 11-20 of 27 results. Next