cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A336421 Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).

Original entry on oeis.org

1, 3, 13, 76, 571, 5309, 59341, 780149
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(2) = 13 ways:
  12/1/1  12/2/1  12/3/1  12/4/1  12/12/1
          12/2/2  12/3/3  12/4/2  12/12/2
                          12/4/4  12/12/3
                                  12/12/4
                                  12/12/12
		

Crossrefs

A000258 shifted once to the left is dominated by this sequence.
A336422 is the generalization to non-superprimorials.
A000110 counts divisors of superprimorials with distinct prime exponents.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}]

A336941 Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2020

Keywords

Examples

			The a(2) = 8 chains:
  12/1
  12/2/1
  12/3/1
  12/4/1
  12/6/1
  12/4/2/1
  12/6/2/1
  12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939.
A336571 is the case with distinct prime multiplicities.
A336942 is the case using members of A130091.
A337070 is the version ending with any divisor of A006939(n).
A000005 counts divisors.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A181818 gives products of superprimorials, with complement A336426.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.
A336423 counts chains using A130091, with maximal case A336569.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]];
    Table[chns[chern[n]],{n,0,3}]
  • PARI
    a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A337070(n)/2 for n > 0.
a(n) = A074206(A006939(n)).

Extensions

Terms a(8) and beyond from Andrew Howroyd, Aug 30 2020

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A336942 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 5, 95, 8823, 4952323, 20285515801, 714092378624317
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2020

Keywords

Examples

			The a(0) = 1 through a(2) = 5 chains:
  {1}  {2,1}  {12,1}
              {12,2,1}
              {12,3,1}
              {12,4,1}
              {12,4,2,1}
		

Crossrefs

A076954 can be used instead of A006939 (cf. A307895, A325337).
A336423 and A336571 are not restricted to A006939.
A336941 is the version not restricted by A130091.
A337075 is the version for factorials.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[chern[n]],{n,0,3}]

Formula

a(n) = A336423(A006939(n)) = A336571(A006939(n)).

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A337069 Number of strict factorizations of the superprimorial A006939(n).

Original entry on oeis.org

1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n.

Examples

			The a(3) = 34 factorizations:
  2*3*4*15  2*3*60   2*180  360
  2*3*5*12  2*4*45   3*120
  2*3*6*10  2*5*36   4*90
  2*4*5*9   2*6*30   5*72
  3*4*5*6   2*9*20   6*60
            2*10*18  8*45
            2*12*15  9*40
            3*4*30   10*36
            3*5*24   12*30
            3*6*20   15*24
            3*8*15   18*20
            3*10*12
            4*5*18
            4*6*15
            4*9*10
            5*6*12
            5*8*9
		

Crossrefs

A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.
A322583 counts factorizations into factorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[stfa[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318286 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A045778(A006939(n)).
a(n) = A318286(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A337072 Number of factorizations of the superprimorial A006939(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 2, 10, 141, 6769, 1298995, 1148840085, 5307091649182, 143026276277298216, 24801104674619158730662, 30190572492693121799801655311, 278937095127086600900558327826721594
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1), which has n! divisors.
Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of the superprimorial A006939(n).

Examples

			The a(1) = 1 through a(3) = 10 factorizations:
    2  2*6    2*6*30
       2*2*3  6*6*10
              2*5*6*6
              2*2*3*30
              2*2*6*15
              2*3*6*10
              2*2*3*5*6
              2*2*2*3*15
              2*2*3*3*10
              2*2*2*3*3*5
The a(1) = 1 through a(3) = 10 set multipartitions:
     {1}  {1}{12}    {1}{12}{123}
          {1}{1}{2}  {12}{12}{13}
                     {1}{1}{12}{23}
                     {1}{1}{2}{123}
                     {1}{2}{12}{13}
                     {1}{3}{12}{12}
                     {1}{1}{1}{2}{23}
                     {1}{1}{2}{2}{13}
                     {1}{1}{2}{3}{12}
                     {1}{1}{1}{2}{2}{3}
		

Crossrefs

A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103774 is the version for factorials instead of superprimorials.
A337073 is the strict case (strict factorizations into squarefree numbers).
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facsqf[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsqf[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[facsqf[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318360 for count.
    a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020

Formula

a(n) = A050320(A006939(n)).
a(n) = A318360(A002110(n)). - Andrew Howroyd, Aug 31 2020

Extensions

a(7)-a(12) from Andrew Howroyd, Aug 31 2020

A125024 Minimal Goedel number of endofunctions on k points, by row and sorted within rows (number of points).

Original entry on oeis.org

1, 2, 6, 12, 18, 30, 60, 90, 150, 540, 1500, 2250, 210, 420, 630, 1050, 1890, 2520, 3150, 3780, 7560, 9450, 15750, 18900, 28350, 75600, 113400, 126000, 141750, 216000, 246960, 5402250, 2310, 4620, 6930, 11550
Offset: 0

Views

Author

Jonathan Vos Post, Nov 15 2006

Keywords

Comments

If one writes an endofunction over n points (finite n) and numbers the points 1 through n, then each labeled sagittal graph of an endofunction from (1,2,3,..., z) to (a, b, c, ..., z) with a, b, c, ..., z elements of (1,2,3,..., z), is isomorphic to a Goedel number prime(1)^a * prime(2)^b * ... * prime(z)^z. Then, among all the Goedel numbers for different labeled endofunctions of the same (to isomorphism) unlabeled endofunction, there is a unique minimal Goedel number, which is thus the Goedel number for that unlabeled endofunction. Similarly, there is a minimal Goedel number for all the endofunctions on n points, for any n. Iterating the endofunction yields those x for which f^k(n) = x, allowing us to see the cycle index. The length of the n-th row is A001372(n). Each row begins with primorial n# = A002110(n) corresponding to the endofunction (1, 2, 3, ..., n) -> (1, 1, 1, ..., 1) which maps every integer other than 1 to 1 and loops 1 to itself; and ends with the Goedel number of the endofunction consisting only of a cycle of length n labeled (1, 2, 3, ..., n-1, n) -> (n-1, n-2, ..., n, 1). The sequence includes A074736(n) which corresponds to the identity endofunction on n points.

Examples

			For example, take the endofunction on 4 points which is composed of two 2-cycles. We can write this as: (1, 2, 3, 4) -> (2, 1, 4, 3) which has the Goedel number 2^2 * 3^1 * 5^4 * 7^3 = 2572500. We can also renumber the points (applying the symmetric group S_n: n^n -> n^n) and write it: (1, 2, 3, 4) -> (3, 4, 1, 2) which gives us the Goedel number 2^3 * 3*4 * 5^1 * 7^2 = 158760. But the minimal Goedel number for that endofunction comes from:
(1, 2, 3, 4) -> (4, 3, 2, 1) which gives us 756000. Hence I can enumerate all the minimal Goedel numbers for the 7 endofunctions on 4 points as: 30, 60, 90, 150, 540, 1500, 2250.
Table begins:
n | row(n) of Goedel numbers
0 | 1. (formally defining prime(0) = 1)
1 | 2.
2 | 6, 12, 18.
3 | 30, 60, 90, 150, 540, 1500, 2250.
4 | 210, 420, 630, 1050, 1890, 2520, 3150, 3780, 7560, 9450, 15750, 18900, 28350, 75600, 113400, 126000, 141750, 216000, 246960, 5402250.
5 | 2310, 4620, 6930, 11550, ...
6 | 30030, 60060, 90090, 150150, ...
7 | 510510, 1021020, 1531530, ...
8 | 9699690, 19399380.
		

Crossrefs

Cf. A001372, A002110, A074736 Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity, A076954 Product_{i=1..n} prime(i)^i, A125023 Number of mappings (or mapping patterns) from k =< n points to themselves; number of endofunctions on k <= n points.

Formula

a(A125023(n)) = A002110(n).

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).
Previous Showing 21-30 of 37 results. Next