cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A369704 Number of pairs (p,q) of partitions of n such that the set of parts in q is a subset of the set of parts in p.

Original entry on oeis.org

1, 1, 2, 4, 8, 13, 28, 43, 84, 137, 243, 372, 684, 1010, 1702, 2620, 4256, 6276, 10134, 14740, 23094, 33742, 51139, 73550, 111303, 158140, 233006, 331099, 481324, 674778, 973928, 1353504, 1925734, 2668263, 3748636, 5153887, 7201684, 9820055, 13572468, 18445878
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2024

Keywords

Examples

			a(5) = 13: (11111, 11111), (2111, 11111), (2111, 2111), (2111, 221), (221, 11111), (221, 2111), (221, 221), (311, 11111), (311, 311), (32, 32), (41, 11111), (41, 41), (5, 5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(n=0,
         `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(
          add(b(n-i*j, m-i*h, i-1), h=0..m/i), j=1..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i - 1] + Sum[Sum[b[n - i*j, m - i*h, i - 1], {h, 0, m/i}], { j, 1, n/i}]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)

Formula

a(n) = A000041(n) + A369707(n).

A384999 Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 8, 1, 1, 15, 4, 1, 21, 13, 1, 33, 28, 1, 1, 41, 58, 4, 1, 56, 103, 13, 1, 69, 170, 35, 1, 87, 269, 77, 1, 1, 99, 404, 158, 4, 1, 127, 579, 298, 13, 1, 141, 810, 529, 35, 1, 165, 1116, 880, 86, 1, 189, 1470, 1431, 183, 1, 1, 220, 1935, 2214, 371, 4, 1, 238, 2475, 3348, 701, 13
Offset: 0

Views

Author

Omar E. Pol, Jul 22 2025

Keywords

Comments

When part i has multiplicity j > 0 exactly one part i is "designated".
The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
Column k gives the partial sums of the column k of A385001.
Columns converge to A210843 which is also the partial sums of A000716.

Examples

			Triangle begins:
---------------------------------------------
   n\k:   0    1     2      3     4    5   6
---------------------------------------------
   0 |    1;
   1 |    1,   1;
   2 |    1,   4;
   3 |    1,   8,    1;
   4 |    1,  15,    4;
   5 |    1,  21,   13;
   6 |    1,  33,   28,     1;
   7 |    1,  41,   58,     4;
   8 |    1,  56,  103,    13;
   9 |    1,  69,  170,    35;
  10 |    1,  87,  269,    77,    1;
  11 |    1,  99,  404,   158,    4;
  12 |    1, 127,  579,   298,   13;
  13 |    1, 141,  810,   529,   35;
  14 |    1, 165, 1116,   880,   86;
  15 |    1, 189, 1470,  1431,  183,   1;
  16 |    1, 220, 1935,  2214,  371,   4;
  17 |    1, 238, 2475,  3348,  701,  13;
  18 |    1, 277, 3156,  4894, 1269,  35;
  19 |    1, 297, 3921,  7036, 2187,  86;
  20 |    1, 339, 4866,  9871, 3639, 194;
  21 |    1, 371, 5906, 13629, 5872, 402,  1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 22 2025

A163318 Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.

Original entry on oeis.org

1, 1, 4, 8, 19, 36, 76, 142, 272, 496, 900, 1592, 2784, 4792, 8138, 13688, 22703, 37380, 60838, 98310, 157298, 250162, 394332, 618032, 961512, 1487563, 2286610, 3496776, 5316666, 8044598, 12110538, 18147166, 27068692, 40203306, 59459998, 87587428, 128522850
Offset: 0

Views

Author

Vladeta Jovovic, Jul 24 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    terms = 40;
    CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Nov 12 2020 *)

A293378 Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.

Original entry on oeis.org

1, 2, 7, 16, 39, 80, 171, 328, 638, 1168, 2133, 3744, 6540, 11092, 18687, 30816, 50421, 81136, 129582, 204160, 319340, 493952, 758781, 1154624, 1745748, 2617958, 3902614, 5776144, 8501784, 12434320, 18092565, 26175784, 37689734, 53989056, 76993497, 109284736
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 11 2017 *)

Formula

G.f.: Product_{k>0} ((1 - x^(6*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(3*k))))^2.
a(n) ~ 5^(5/4) * exp(2*Pi*sqrt(5*n)/3) / (72 * sqrt(3) * n^(7/4)). - Vaclav Kotesovec, Oct 11 2017

A293569 Partitions with designated summands in which no parts are multiples of 3.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 21, 29, 48, 64, 99, 132, 195, 257, 366, 480, 666, 864, 1173, 1511, 2016, 2576, 3384, 4296, 5574, 7027, 9015, 11296, 14355, 17880, 22527, 27908, 34896, 43008, 53406, 65508, 80844, 98711, 121128, 147272, 179784, 217704, 264489, 319064
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2017

Keywords

Examples

			n = 3        n = 4            n = 5
----------   --------------   ------------------
2'+ 1'       4'               5'
1'+ 1 + 1    2'+ 2            4'+ 1'
1 + 1'+ 1    2 + 2'           2'+ 2 + 1'
1 + 1 + 1'   2'+ 1'+ 1        2 + 2'+ 1'
             2'+ 1 + 1'       2'+ 1'+ 1 + 1
             1'+ 1 + 1 + 1    2'+ 1 + 1'+ 1
             1 + 1'+ 1 + 1    2'+ 1 + 1 + 1'
             1 + 1 + 1'+ 1    1'+ 1 + 1 + 1 + 1
             1 + 1 + 1 + 1'   1 + 1'+ 1 + 1 + 1
                              1 + 1 + 1'+ 1 + 1
                              1 + 1 + 1 + 1'+ 1
                              1 + 1 + 1 + 1 + 1'
----------   --------------   ------------------
a(3) = 4.    a(4) = 9.        a(5) = 12.
		

Crossrefs

Cf. A077285 (PD(n)), A102186 (PDO(n)), A293629.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^(6*k))^2 / ( (1-x^k)^2 * (1+x^k) * (1+x^(9*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2017 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(k, n)
      partition(n, 1, n).select{|i| i.all?{|j| j % k > 0}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values.inject(:*)}.inject(:+)
    end
    def A293569(n)
      [1] + (1..n).map{|i| A(3, i)}
    end
    p A293569(40)

Formula

Expansion of eta(q^6)^2 * eta(q^9) / (eta(q) * eta(q^2) * eta(q^18)) in powers of q.
a(n) ~ 5^(1/4) * exp(2*Pi*sqrt(5*n/3)/3) / (2 * 3^(7/4)* n^(3/4)). - Vaclav Kotesovec, Oct 13 2017

A384998 Total number of partitions of all numbers <= n with designated summands, n >= 0.

Original entry on oeis.org

1, 2, 5, 10, 20, 35, 63, 104, 173, 275, 435, 666, 1018, 1516, 2248, 3275, 4745, 6776, 9632, 13528, 18910, 26182, 36078, 49311, 67111, 90690, 122052, 163271, 217559, 288350, 380806, 500504, 655601, 855113, 1111777, 1439911, 1859347, 2392509, 3069921, 3926494
Offset: 0

Views

Author

Omar E. Pol, Aug 06 2025

Keywords

Crossrefs

Partial sums of A077285.
Row sums of A384999.
Cf. A385001.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*j, j=1..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
    seq(a(n), n=0..41);  # Alois P. Heinz, Aug 06 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2025 *)

Formula

From Vaclav Kotesovec, Aug 08 2025: (Start)
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (2^(9/4) * sqrt(3) * Pi * n^(3/4)).
G.f.: 1/(1-x) * Product_{k>=1} (1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))). (End)

A091601 Number of compositions (ordered partitions) of n with designated summands.

Original entry on oeis.org

1, 1, 3, 6, 14, 30, 69, 153, 345, 771, 1730, 3873, 8682, 19450, 43590, 97668, 218864, 490416, 1098933, 2462458, 5517870, 12364356, 27705944, 62083134, 139115247, 311727845, 698516370, 1565227653, 3507344882, 7859219406, 17610851898
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2004

Keywords

Examples

			a(3)=6 because the compositions of 3 with designated summands are
3', 2'1', 1'2', 1'11, 11'1, 111'.
The composition 1121 corresponds to 1'12'1' and 11'2'1'.
		

Crossrefs

Cf. A077285.

Programs

  • Mathematica
    Table[l = Split /@ Flatten[Permutations /@ IntegerPartitions@n, 1];
    Total[Table[x = l[[i]]; Product[Length@x[[j]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 15}] (* Robert Price, Jun 07 2020 *)

Formula

INVERT(DCONV(A000012, iINVERT(A000027)))
G.f.: 1/(1 - sum(k>0, x^k/(1-x^k+x^(2*k)))). - Vladeta Jovovic, Dec 04 2004

A104510 G.f.: Product_{i>=1} (1 - 2*(-x)^i)/(1 - (-x)^i)^2.

Original entry on oeis.org

0, -1, 2, -4, 4, -7, 4, -5, 0, 5, -18, 23, -46, 65, -82, 108, -132, 152, -164, 168, -144, 132, -48, -39, 212, -365, 658, -947, 1382, -1800, 2394, -2947, 3644, -4289, 5102, -5687, 6392, -6820, 7112, -7139, 6776, -5836, 4338, -2036, -1342, 5585, -11392, 18513, -27456, 37876, -51072, 65488, -82982, 101898
Offset: 1

Views

Author

Vladeta Jovovic, Apr 19 2005

Keywords

Crossrefs

Programs

  • Maple
    gf:=product((1-2*(-x)^i)/(1-(-x)^i)^2, i=1..100): s:=series(gf, x, 100): for n from 1 to 99 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005

Formula

a(n) = Sum (k(1)-1)*(k(2)-1)*...*(k(n)-1), where the sum is taken over all (k(1), k(2), ..., k(n)) such that k(1) + 2*k(2) + ... + n*k(n) = n, k(i) >= 0, i=1..n.
G.f.: Product_{i>=1} (1 - (-x)^i)^A052823(i). - James Sellers, Apr 22 2005

Extensions

More terms from James Sellers, Apr 22 2005

A255180 Number of partitions of n in which two summands (of each size) are designated.

Original entry on oeis.org

1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
Offset: 0

Views

Author

Geoffrey Critzer, Mar 19 2015

Keywords

Examples

			a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1.  In the first case there is 1 way and in the second case there are 6 ways.  1 + 6 = 7.
		

Crossrefs

Cf. A077285, A070933 (where any number of summands of any size are designated).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 19 2015
  • Mathematica
    nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]

Formula

G.f.: Product_{n>=1} 1 + x^(2*n)/(1 - x^n)^3.
Previous Showing 11-19 of 19 results.