A369704
Number of pairs (p,q) of partitions of n such that the set of parts in q is a subset of the set of parts in p.
Original entry on oeis.org
1, 1, 2, 4, 8, 13, 28, 43, 84, 137, 243, 372, 684, 1010, 1702, 2620, 4256, 6276, 10134, 14740, 23094, 33742, 51139, 73550, 111303, 158140, 233006, 331099, 481324, 674778, 973928, 1353504, 1925734, 2668263, 3748636, 5153887, 7201684, 9820055, 13572468, 18445878
Offset: 0
a(5) = 13: (11111, 11111), (2111, 11111), (2111, 2111), (2111, 221), (221, 11111), (221, 2111), (221, 221), (311, 11111), (311, 311), (32, 32), (41, 11111), (41, 41), (5, 5).
-
b:= proc(n, m, i) option remember; `if`(n=0,
`if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(
add(b(n-i*j, m-i*h, i-1), h=0..m/i), j=1..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..42);
-
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i - 1] + Sum[Sum[b[n - i*j, m - i*h, i - 1], {h, 0, m/i}], { j, 1, n/i}]]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
A384999
Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 8, 1, 1, 15, 4, 1, 21, 13, 1, 33, 28, 1, 1, 41, 58, 4, 1, 56, 103, 13, 1, 69, 170, 35, 1, 87, 269, 77, 1, 1, 99, 404, 158, 4, 1, 127, 579, 298, 13, 1, 141, 810, 529, 35, 1, 165, 1116, 880, 86, 1, 189, 1470, 1431, 183, 1, 1, 220, 1935, 2214, 371, 4, 1, 238, 2475, 3348, 701, 13
Offset: 0
Triangle begins:
---------------------------------------------
n\k: 0 1 2 3 4 5 6
---------------------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 4;
3 | 1, 8, 1;
4 | 1, 15, 4;
5 | 1, 21, 13;
6 | 1, 33, 28, 1;
7 | 1, 41, 58, 4;
8 | 1, 56, 103, 13;
9 | 1, 69, 170, 35;
10 | 1, 87, 269, 77, 1;
11 | 1, 99, 404, 158, 4;
12 | 1, 127, 579, 298, 13;
13 | 1, 141, 810, 529, 35;
14 | 1, 165, 1116, 880, 86;
15 | 1, 189, 1470, 1431, 183, 1;
16 | 1, 220, 1935, 2214, 371, 4;
17 | 1, 238, 2475, 3348, 701, 13;
18 | 1, 277, 3156, 4894, 1269, 35;
19 | 1, 297, 3921, 7036, 2187, 86;
20 | 1, 339, 4866, 9871, 3639, 194;
21 | 1, 371, 5906, 13629, 5872, 402, 1;
...
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
end:
g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 22 2025
A163318
Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.
Original entry on oeis.org
1, 1, 4, 8, 19, 36, 76, 142, 272, 496, 900, 1592, 2784, 4792, 8138, 13688, 22703, 37380, 60838, 98310, 157298, 250162, 394332, 618032, 961512, 1487563, 2286610, 3496776, 5316666, 8044598, 12110538, 18147166, 27068692, 40203306, 59459998, 87587428, 128522850
Offset: 0
-
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 25 2013
-
terms = 40;
CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Nov 12 2020 *)
A293378
Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.
Original entry on oeis.org
1, 2, 7, 16, 39, 80, 171, 328, 638, 1168, 2133, 3744, 6540, 11092, 18687, 30816, 50421, 81136, 129582, 204160, 319340, 493952, 758781, 1154624, 1745748, 2617958, 3902614, 5776144, 8501784, 12434320, 18092565, 26175784, 37689734, 53989056, 76993497, 109284736
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 11 2017 *)
A293569
Partitions with designated summands in which no parts are multiples of 3.
Original entry on oeis.org
1, 1, 3, 4, 9, 12, 21, 29, 48, 64, 99, 132, 195, 257, 366, 480, 666, 864, 1173, 1511, 2016, 2576, 3384, 4296, 5574, 7027, 9015, 11296, 14355, 17880, 22527, 27908, 34896, 43008, 53406, 65508, 80844, 98711, 121128, 147272, 179784, 217704, 264489, 319064
Offset: 0
n = 3 n = 4 n = 5
---------- -------------- ------------------
2'+ 1' 4' 5'
1'+ 1 + 1 2'+ 2 4'+ 1'
1 + 1'+ 1 2 + 2' 2'+ 2 + 1'
1 + 1 + 1' 2'+ 1'+ 1 2 + 2'+ 1'
2'+ 1 + 1' 2'+ 1'+ 1 + 1
1'+ 1 + 1 + 1 2'+ 1 + 1'+ 1
1 + 1'+ 1 + 1 2'+ 1 + 1 + 1'
1 + 1 + 1'+ 1 1'+ 1 + 1 + 1 + 1
1 + 1 + 1 + 1' 1 + 1'+ 1 + 1 + 1
1 + 1 + 1'+ 1 + 1
1 + 1 + 1 + 1'+ 1
1 + 1 + 1 + 1 + 1'
---------- -------------- ------------------
a(3) = 4. a(4) = 9. a(5) = 12.
-
nmax = 50; CoefficientList[Series[Product[(1-x^(6*k))^2 / ( (1-x^k)^2 * (1+x^k) * (1+x^(9*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2017 *)
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(k, n)
partition(n, 1, n).select{|i| i.all?{|j| j % k > 0}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values.inject(:*)}.inject(:+)
end
def A293569(n)
[1] + (1..n).map{|i| A(3, i)}
end
p A293569(40)
A384998
Total number of partitions of all numbers <= n with designated summands, n >= 0.
Original entry on oeis.org
1, 2, 5, 10, 20, 35, 63, 104, 173, 275, 435, 666, 1018, 1516, 2248, 3275, 4745, 6776, 9632, 13528, 18910, 26182, 36078, 49311, 67111, 90690, 122052, 163271, 217559, 288350, 380806, 500504, 655601, 855113, 1111777, 1439911, 1859347, 2392509, 3069921, 3926494
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*j, j=1..n/i)))
end:
a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
seq(a(n), n=0..41); # Alois P. Heinz, Aug 06 2025
-
nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2025 *)
A091601
Number of compositions (ordered partitions) of n with designated summands.
Original entry on oeis.org
1, 1, 3, 6, 14, 30, 69, 153, 345, 771, 1730, 3873, 8682, 19450, 43590, 97668, 218864, 490416, 1098933, 2462458, 5517870, 12364356, 27705944, 62083134, 139115247, 311727845, 698516370, 1565227653, 3507344882, 7859219406, 17610851898
Offset: 0
a(3)=6 because the compositions of 3 with designated summands are
3', 2'1', 1'2', 1'11, 11'1, 111'.
The composition 1121 corresponds to 1'12'1' and 11'2'1'.
-
Table[l = Split /@ Flatten[Permutations /@ IntegerPartitions@n, 1];
Total[Table[x = l[[i]]; Product[Length@x[[j]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 15}] (* Robert Price, Jun 07 2020 *)
A104510
G.f.: Product_{i>=1} (1 - 2*(-x)^i)/(1 - (-x)^i)^2.
Original entry on oeis.org
0, -1, 2, -4, 4, -7, 4, -5, 0, 5, -18, 23, -46, 65, -82, 108, -132, 152, -164, 168, -144, 132, -48, -39, 212, -365, 658, -947, 1382, -1800, 2394, -2947, 3644, -4289, 5102, -5687, 6392, -6820, 7112, -7139, 6776, -5836, 4338, -2036, -1342, 5585, -11392, 18513, -27456, 37876, -51072, 65488, -82982, 101898
Offset: 1
-
gf:=product((1-2*(-x)^i)/(1-(-x)^i)^2, i=1..100): s:=series(gf, x, 100): for n from 1 to 99 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005
A255180
Number of partitions of n in which two summands (of each size) are designated.
Original entry on oeis.org
1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
Offset: 0
a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1. In the first case there is 1 way and in the second case there are 6 ways. 1 + 6 = 7.
Cf.
A077285,
A070933 (where any number of summands of any size are designated).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 19 2015
-
nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]
Comments