cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A334974 Infinitary admirable numbers: numbers k such that there is a proper infinitary divisor d of k such that isigma(k) - 2*d = 2*k, where isigma is the sum of infinitary divisors function (A049417).

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 96, 102, 104, 114, 120, 138, 150, 174, 186, 222, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 678, 726, 762, 780, 786, 822, 834, 894, 906, 942
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper infinitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) whose number of divisors is a power of 2 (A036537) are also infinitary admirable numbers, since all of their divisors are infinitary. Terms with number of divisors that is not a power of 2 are 96, 150, 294, 360, 420, 486, 540, 630, 660, 726, 780, 960, 990, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper infinitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The infinitary version of A111592.
Subsequence of A129656.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1000], infAdmQ]

A335199 Infinitary Zumkeller numbers (A335197) whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum in a single way.

Original entry on oeis.org

6, 56, 60, 70, 72, 88, 90, 104, 3040, 3230, 3770, 4030, 4510, 5170, 5390, 5800, 5830, 6808, 7144, 7192, 7400, 7912, 8056, 8968, 9272, 9656, 9928, 10744, 10792, 11016, 11096, 11288, 11392, 12104, 12416, 12928, 13184, 13192, 13696, 13736, 13952, 14008, 14464, 14552
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Examples

			6 is a term since there is only one partition of its set of nonunitary divisors, {1, 2, 3, 6}, into two disjoint sets of equal sum: {1, 2, 3} and {6}.
		

Crossrefs

The infinitary version of A083209.
Subsequence of A335197.

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[15000], infZumQ] (* after Michael De Vlieger at A077609 *)

A360721 a(n) is the number of infinitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A005361 (number of powerful divisors), A323308 (number of unitary powerful divisors).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^hammingweight(f[i, 2]) - f[i, 2]%2);}

Formula

Multiplicative with a(p^e) = 2^A000120(e) - (e mod 2).
a(n) <= A037445(n) with equality if and only if n is a square.
a(n) <= A005361(n) with equality if and only if n is not in A360723.
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} ((1-1/p) * Sum_{k>=1} ((2^A000120(k)- k mod 2)/p^k)) = 1.72717... .

A361316 Numerators of the harmonic means of the infinitary divisors of the positive integers.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 32, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 16, 25, 52, 27, 14, 29, 10, 31, 128, 11, 68, 35, 72, 37, 38, 39, 32, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 56, 57, 116, 59, 4, 61, 31, 63, 256, 65, 11, 67, 136
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Examples

			Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
		

Crossrefs

Similar sequences: A099377, A103339.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Numerator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); numerator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }

Formula

a(n) = numerator(n*A037445(n)/A049417(n)).
a(n)/A361317(n) <= A099377(n)/A099378(n), with equality if and only if n is in A036537.
a(n)/A361317(n) >= A103339(n)/A103340(n), with equality if and only if n is in A138302.

A361317 Denominators of the harmonic means of the infinitary divisors of the positive integers.

Original entry on oeis.org

1, 3, 2, 5, 3, 1, 4, 15, 5, 9, 6, 5, 7, 3, 2, 17, 9, 5, 10, 3, 8, 9, 12, 5, 13, 21, 10, 5, 15, 3, 16, 51, 4, 27, 12, 25, 19, 15, 14, 9, 21, 2, 22, 15, 1, 9, 24, 17, 25, 39, 6, 35, 27, 5, 18, 15, 20, 45, 30, 1, 31, 12, 20, 85, 21, 3, 34, 45, 8, 9, 36, 25, 37, 57
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Crossrefs

Cf. A037445, A049417, A077609, A063947 (positions of 1's), A361316 (numerators).
Similar sequences: A099378, A103340.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Denominator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); denominator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }

Formula

a(n) = denominator(n*A037445(n)/A049417(n)).

A363329 a(n) is the number of divisors of n that are both coreful and infinitary.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

For the definition of a coreful divisor see A307958, and for the definition of an infinitary divisor see A037445.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a coreful and an infinitary divisor, the exponent of the highest power of p dividing d is a number k >= 1 such that the bitwise AND of e and k is equal to k.
The least term that does not equal 1 or 3 is a(128) = 7.
The range of this sequence is A282572.

Examples

			a(8) = 3 since 8 has 4 divisors, 1, 2, 4 and 8, all are infinitary and 3 of them (2, 4 and 8) are also coreful.
		

Crossrefs

Cf. A000120, A005361 (number of coreful divisors), A007947, A037445, A077609, A138302, A282572, A359411.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = factorback(apply(x -> 2^hammingweight(x) - 1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A363329(n): return prod((1<Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = 2^A000120(e) - 1.
a(n) = 1 is and only if n is in A138302.
a(n) >= A359411(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (-1/p + (1-1/p)*Product_{k>=0} (1 + 2/p^(2^k))) = 1.29926464312956239535... .

A365296 The smallest coreful infinitary divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 6, 25, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 6, 55, 14, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2023

Keywords

Comments

A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n.
The number of coreful infinitary divisors of n is A363329(n).
All the terms are in A138302.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2^valuation(f[i,2], 2)));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365296(n): return prod(p**(e&-e) for p, e in factorint(n).items()) # Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = p^A006519(e).
a(n) = n if and only if n is in A138302.
a(n) >= A007947(n) with equality if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 1/p + Sum_{e>=1} 1/p^f(e)-1/p^(f(e)+1)) = 0.4459084041..., where f(k) = 2*k - A006519(k) = A339597(k-1).
A037445(a(n)) = A034444(n). - Amiram Eldar, Oct 19 2023

A366538 The number of unitary divisors of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

Also, the number of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.

Crossrefs

Similar sequences: A366534, A366536.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(2^#e, ", ")));

Formula

a(n) = A034444(A138302(n)).
a(n) = A037445(A138302(n)).

A374786 Numerator of the mean infinitary abundancy index of the infinitary divisors of n.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 45, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 105, 51, 135, 133, 135, 59, 77, 63, 165, 161, 175, 33, 19, 75, 195, 63, 99, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 665, 23, 675, 91, 295, 119, 231, 123, 315
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

The infinitary abundancy index of a number k is A049417(k)/k.
The record values of a(n)/A374787(n) are attained at the terms of A037992.
The least number k such that a(k)/A374787(k) is larger than 2, 3, 4, ..., is A037992(6) = 7560, A037992(33) = 1370819010042780920891599455129161859473627856000, ... .

Examples

			For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
		

Crossrefs

Similar sequences: A374777/A374778, A374783/A374784.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Numerator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); numerator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))));}

Formula

Let f(n) = a(n)/A374787(n). Then:
f(n) = (Sum_{d infinitary divisor of n} isigma(d)/d) / id(n), where isigma(n) is the sum of infinitary divisors of n (A049417), and id(n) is their number (A037445).
f(n) is multiplicative with f(p^e) = Product{k>=1, e_k=1} (1 + 1/(2*p^(2^(k+1)))), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
f(n) = (Sum_{d infinitary divisor of n} d*id(d)) / (n*id(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{P} (1 + 1/(2*P*(P+1))) = 1.21407233718434377029..., where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376). For comparison, the asymptotic mean of the infinitary abundancy index over all the positive integers is 1.461436... = 2 * A327574.
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).
f(n) >= A374783(n)/A374784(n) with equality if and only if n is in A138302.

A374787 Denominator of the mean infinitary abundancy index of the infinitary divisors of n.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 32, 18, 8, 22, 16, 26, 56, 60, 32, 34, 72, 38, 80, 4, 88, 46, 64, 50, 104, 108, 112, 58, 48, 62, 128, 132, 136, 28, 16, 74, 152, 52, 64, 82, 16, 86, 176, 180, 184, 94, 64, 98, 40, 204, 208, 106, 432, 20, 448, 76, 232, 118, 160, 122, 248
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Examples

			For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = denominator(9/8) = 8.
		

Crossrefs

Cf. A037445, A049417 (isigma), A077609, A374786 (numerators).
Similar sequences: A374777/A374778, A374783/A374784.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Denominator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); denominator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))));}
Previous Showing 21-30 of 76 results. Next