A351322
Number T(n,k) of tilings of a 3k X n rectangle with right trominoes.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 0, 1, 1, 0, 8, 8, 4, 1, 1, 0, 16, 0, 18, 0, 1, 1, 0, 32, 64, 88, 72, 8, 1, 1, 0, 64, 0, 468, 384, 162, 0, 1, 1, 0, 128, 512, 2672, 8544, 4312, 520, 16, 1, 1, 0, 256, 0, 16072, 76800, 118586, 22656, 1514, 0, 1, 1, 0, 512, 4096, 100064, 1168512, 3403624, 1795360, 204184, 4312, 32, 1
Offset: 0
6 X 2 rectangle: 4 tilings
___ ___ ___ ___
| _| | _| |_ | |_ |
|_| | |_| | | |_| | |_|
|___| |___| |___| |___|
| _| |_ | | _| |_ |
|_| | | |_| |_| | | |_|
|___| |___| |___| |___|
.
Table T(n,k) begins:
n\k__0__1______2_________3_____________4
0: 1 1 1 1 1
1: 1 0 0 0 0
2: 1 2 4 8 16
3: 1 0 8 0 64
4: 1 4 18 88 468
5: 1 0 72 384 8544
6: 1 8 162 4312 118586
7: 1 0 520 22656 1795360
8: 1 16 1514 204184 29986082
9: 1 0 4312 1193600 467966840
10: 1 32 13242 9567192 7758809670
11: 1 0 39088 63112256 124693887784
A073370
Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0
Triangle begins as:
1;
1, 1;
3, 2, 1;
5, 7, 3, 1;
11, 16, 12, 4, 1;
21, 41, 34, 18, 5, 1;
43, 94, 99, 60, 25, 6, 1;
85, 219, 261, 195, 95, 33, 7, 1;
171, 492, 678, 576, 340, 140, 42, 8, 1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 5, 7, 3, 1;
0, 11, 16, 12, 4, 1;
0, 21, 41, 34, 18, 5, 1; - _Philippe Deléham_, Feb 19 2013
-
A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
[A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
-
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
-
T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
-
def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022
A367211
Triangular array read by rows: T(n, k) = binomial(n, k) * A000129(n - k) for 0 <= k < n.
Original entry on oeis.org
1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
Offset: 1
First nine rows:
[n\k] 0 1 2 3 4 5 6 7 8
[1] 1;
[2] 2 2;
[3] 5 6 3;
[4] 12 20 12 4;
[5] 29 60 50 20 5;
[6] 70 174 180 100 30 6;
[7] 169 490 609 420 175 42 7;
[8] 408 1352 1960 1624 840 280 56 8;
[9] 985 3672 6084 5880 3654 1512 420 72 9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
Cf.
A000129 (column 1, Pell numbers),
A361732 (column 2),
A000027 (T(n,n-1)),
A007070 (row sums, p(n,1)),
A077957 (alternating row sums, p(n,-1)),
A081179 (p(n,2)),
A077985 (p(n,-2)),
A081180 (p(n,3)),
A007070 (p(n,-3)),
A081182 (p(n,4)),
A094440,
A367208,
A367209,
A367210.
-
P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
# (after Werner Schulte) Peter Luschny, Nov 24 2023
-
p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
(* Or: *)
T[n_, k_] := Module[{P},
P[m_] := P[m] = If[m <= 1, m, 2*P[m - 1] + P[m - 2]];
P[n - k] * Binomial[n, k] ];
Table[T[n, k], {n, 1, 9}, {k, 0, n - 1}] (* Peter Luschny, Mar 07 2025 *)
A032085
Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
Original entry on oeis.org
2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- C. G. Bower, Transforms (2)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1022
- S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
-
[2] cat [2^(n-1)-2^Floor((n-1)/2) : n in [2..40]]; // Wesley Ivan Hurt, Jul 03 2020
-
Join[{2}, LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 29]] (* Jean-François Alcover, Oct 11 2017 *)
-
a(n)=([0,1,0; 0,0,1; -4,2,2]^(n-1)*[2;1;2])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
A053538
Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0
n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}
Triangle begins :
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
5, 5, 4, 1, 1;
8, 10, 7, 5, 1, 1;
13, 18, 16, 9, 6, 1, 1;
...
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :
1;
0, 1;
0, 1, 1;
0, 2, 1, 1;
0, 3, 3, 1, 1;
0, 5, 5, 4, 1, 1;
0, 8, 10, 7, 5, 1, 1;
0, 13, 18, 16, 9, 6, 1, 1;
For runs instead of anti-runs we have
A202064.
A034839 counts subsets by number of maximal runs.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
A384893 counts subsets by number of maximal anti-runs.
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
-
[[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
-
a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):
seq(seq(a(n,m), m=0..n), n=0..12); # Alois P. Heinz, Sep 19 2013
-
Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
-
{T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
-
[[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
A228405
Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.
Original entry on oeis.org
0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0
With row # as n. and column # as k, and n, k =>0, the array begins:
0, 1, 0, 2, 0, 4, 0, 8, ...
1, 1, 2, 2, 4, 4, 8, 8, ...
2, 3, 4, 6, 8, 12, 16, 24, ...
5, 7, 10, 14, 20, 28, 40, 56, ...
12, 17, 24, 34, 48, 68, 96, 136, ...
29, 41, 58, 82, 116, 164, 232, 328, ...
70, 99, 140, 198, 280, 396, 560, 792, ...
169, 239, 338, 478, 676, 956, 1352, 1912, ...
408, 577, 816, 1154, 1632, 2308, 3264, 4616, ...
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- MacTutor, D'Arcy Thompson on Greek irrationals
- D'Arcy Thompson, Excess and Defect: Or the Little More and the Little Less, Mind, New Series, Vol. 38, No. 149 (Jan., 1929), pp. 43-55 (13 pages). See page 50.
A135530
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3), with a(0)=2, a(1)=1.
Original entry on oeis.org
2, 1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576
Offset: 0
-
CoefficientList[Series[(-x-2)/(2x^2-1),{x,0,40}],x]
Transpose[NestList[{#[[2]],Last[#],Last[#]+2#[[2]]-2First[#]}&,{2,1,4},45]][[1]] (* Harvey P. Dale, Mar 05 2011 *)
LinearRecurrence[{0, 2}, {2, 1}, 25] (* G. C. Greubel, Oct 17 2016 *)
-
a(n)=1<<(1-n%2+n\2) \\ Charles R Greathouse IV, Jun 01 2011
A083878
a(0)=1, a(1)=3, a(n) = 6*a(n-1) - 7*a(n-2), n >= 2.
Original entry on oeis.org
1, 3, 11, 45, 193, 843, 3707, 16341, 72097, 318195, 1404491, 6199581, 27366049, 120799227, 533233019, 2353803525, 10390190017, 45864515427, 202455762443, 893682966669, 3944907462913, 17413664010795, 76867631824379
Offset: 0
-
f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* Robert G. Wilson v, Oct 31 2010 *)
A219946
Number A(n,k) of tilings of a k X n rectangle using right trominoes and 2 X 2 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 4, 4, 4, 4, 0, 1, 1, 0, 5, 0, 6, 0, 5, 0, 1, 1, 0, 6, 8, 16, 16, 8, 6, 0, 1, 1, 0, 13, 0, 37, 0, 37, 0, 13, 0, 1, 1, 0, 16, 16, 92, 136, 136, 92, 16, 16, 0, 1, 1, 0, 25, 0, 245, 0, 545, 0, 245, 0, 25, 0, 1
Offset: 0
A(4,4) = 6, because there are 6 tilings of a 4 X 4 rectangle using right trominoes and 2 X 2 tiles:
.___.___. .___.___. .___.___. .___.___. .___.___. .___.___.
| . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. |
|___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_|
| . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| |
|___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 2, 1, 4, 5, 6, 13, 16, ...
1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...
1, 0, 1, 4, 6, 16, 37, 92, 245, 560, ...
1, 0, 4, 0, 16, 0, 136, 0, 1128, 384, ...
1, 0, 5, 8, 37, 136, 545, 2376, 10534, 46824, ...
1, 0, 6, 0, 92, 0, 2376, 5504, 71248, 253952, ...
1, 0, 13, 16, 245, 1128, 10534, 71248, 652036, 5141408, ...
1, 0, 16, 0, 560, 384, 46824, 253952, 5141408, 44013568, ...
Columns (or rows) k=0-10 give:
A000012,
A000007,
A052947,
A077957,
A165799,
A190759,
A219947,
A219948,
A219949,
A219950,
A219951.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od;
`if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{k, t}, If[Max[l] > n , 0 , If [n == 0 || l == {},1 , If[Min[l] > 0, t = Min[l]; b[n-t, l-t], For[k = 1, k <= Length[l], k++, If[l[[k]] == 0 , Break[]]]; If[k > 1 && l[[k-1]] == 1, b[n, ReplacePart[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]+If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0]]]]]; a[n_, ] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover, Nov 26 2013, translated from Alois P. Heinz's Maple program *)
A367301
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 3, 3, 10, 16, 8, 33, 75, 63, 21, 109, 320, 380, 220, 55, 360, 1296, 1980, 1620, 720, 144, 1189, 5070, 9459, 9940, 6255, 2262, 377, 3927, 19353, 42615, 54561, 44085, 22635, 6909, 987, 12970, 72532, 184034, 277480, 272854, 179972, 78230, 20672, 2584
Offset: 1
First eight rows:
1
3 3
10 16 8
33 75 63 21
109 320 380 220 55
360 1296 1980 1620 720 144
1189 5070 9459 9940 6255 2262 377
3927 19353 42615 54561 44085 22635 6909 987
Row 4 represents the polynomial p(4,x) = 33 + 75*x + 63*x^2 + 21*x^3, so (T(4,k)) = (33,75,63,21), k=0..3.
Cf.
A006190 (column 1);
A001906 (p(n,n-1));
A154244 (row sums, p(n,1));
A077957 (alternating row sums, p(n,-1));
A190984 (p(n,2));
A006190 (signed, p(n,-2));
A154244 (p(n,-3));
A190984 (p(n,-4));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300.
-
p[1, x_] := 1; p[2, x_] := 3 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Comments