cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A351322 Number T(n,k) of tilings of a 3k X n rectangle with right trominoes.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 0, 1, 1, 0, 8, 8, 4, 1, 1, 0, 16, 0, 18, 0, 1, 1, 0, 32, 64, 88, 72, 8, 1, 1, 0, 64, 0, 468, 384, 162, 0, 1, 1, 0, 128, 512, 2672, 8544, 4312, 520, 16, 1, 1, 0, 256, 0, 16072, 76800, 118586, 22656, 1514, 0, 1, 1, 0, 512, 4096, 100064, 1168512, 3403624, 1795360, 204184, 4312, 32, 1
Offset: 0

Views

Author

Gerhard Kirchner, Feb 21 2022

Keywords

Comments

The table is read by descending antidiagonals.
If read by columns or rows:
T(n,1) = A077957(n+1)
T(2,k) = A000079(k) = 2^k
T(4,k) = A046984(k)
T(5,k) = A084478(k)
T(n,2) = A351323(n)
T(7,k) = A351324(k)
Linear recurrences with different numbers of parameters are known for the sequences above.
Overview:
Constant Number of
side length Sequence parameters
2 T(2,k) 1
3 T(n,1),T(3,k) 2
4 T(4,k) 3 see A046984
5 T(5,k) 4 see A084478
6 T(n,2),T(6,k) 11 see A351323
7 T(7,k) 17 see A351324
8 T(8,k) >30
9 T(n,3),T(9,k) >30

Examples

			6 X 2 rectangle: 4 tilings
   ___   ___   ___   ___
  |  _| |  _| |_  | |_  |
  |_| | |_| | | |_| | |_|
  |___| |___| |___| |___|
  |  _| |_  | |  _| |_  |
  |_| | | |_| |_| | | |_|
  |___| |___| |___| |___|
.
Table T(n,k) begins:
  n\k__0__1______2_________3_____________4
   0:  1  1      1         1             1
   1:  1  0      0         0             0
   2:  1  2      4         8            16
   3:  1  0      8         0            64
   4:  1  4     18        88           468
   5:  1  0     72       384          8544
   6:  1  8    162      4312        118586
   7:  1  0    520     22656       1795360
   8:  1 16   1514    204184      29986082
   9:  1  0   4312   1193600     467966840
  10:  1 32  13242   9567192    7758809670
  11:  1  0  39088  63112256  124693887784
		

Crossrefs

Programs

  • Maxima
    See Maxima Code link.

A073370 Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(1+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
Riordan array (1/(1-x-2*x^2), x/(1-x-2*x^2)). - Paul Barry, Mar 15 2005
Subtriangle (obtained by dropping the first column) of the triangle given by (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013
The number of ternary words of length n having k letters equal 2 and 0,1 avoid runs of odd lengths. - Milan Janjic, Jan 14 2017

Examples

			Triangle begins as:
    1;
    1,   1;
    3,   2,   1;
    5,   7,   3,   1;
   11,  16,  12,   4,   1;
   21,  41,  34,  18,   5,   1;
   43,  94,  99,  60,  25,   6,   1;
   85, 219, 261, 195,  95,  33,   7,   1;
  171, 492, 678, 576, 340, 140,  42,   8,   1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  3,  2,  1;
  0,  5,  7,  3,  1;
  0, 11, 16, 12,  4,  1;
  0, 21, 41, 34, 18,  5,  1; - _Philippe Deléham_, Feb 19 2013
		

Crossrefs

Columns: A001045 (k=0), A073371 (k=1), A073372 (k=2), A073373 (k=3), A073374 (k=4), A073375 (k=5), A073376 (k=6), A073377 (k=7), A073378 (k=8), A073379 (k=9).
Cf. A002605 (row sums), A006130 (diagonal sums), A073399, A073400.

Programs

  • Magma
    A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
    [A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
    
  • Maple
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
    flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022

Formula

T(n, m) = Sum_{k=0..floor((n-m)/2)} binomial(n-k, m)*binomial(n-m-k, k)*2^k, if n > m, else 0.
Sum_{k=0..n} T(n, k) = A002605(n+1).
T(n, m) = (1*(n-m+1)*T(n, m-1) + 2*2*(n+m)*T(n-1, m-1))/((1^2 + 4*2)*m), n >= m >= 1, T(n, 0) = A001045(n+1), n >= 0, else 0.
T(n, m) = (p(m-1, n-m)*1*(n-m+1)*T(n-m+1) + q(m-1, n-m)*2*(n-m+2)*T(n-m))/(m!*9^m), n >= m >= 1, with T(n) = T(n, m=0) = A001045(n+1), else 0; p(k, n) = Sum_{j=0..k} (A(k, j)*n^(k-j) and q(k, n) = Sum_{j=0..k} B(k, j)*n^(k-j), with the number triangles A(k, m) = A073399(k, m) and B(k, m) = A073400(k, m).
G.f.: 1/(1-(1+2*x)*x)^(m+1) = 1/((1+x)*(1-2*x))^(m+1), m >= 0, for column m (without leading zeros).
T(n, 0) = A001045(n), T(1, 1) = 1, T(n, k) = 0 if k>n, T(n, k) = T(n-1, k-1) + 2*T(n-2, k) + T(n-1, k) otherwise. - Paul Barry, Mar 15 2005
G.f.: (1+x)*(1-2*x)/(1-x-2*x^2-x*y) for the triangle including the 1, 0, 0, 0, 0, ... column. - R. J. Mathar, Aug 11 2015
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (1 + x)*R(n-1,x) + 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 - 2*x/(1 + ... + x/(1 - 2*x/(1)))) (with 2*n partial numerators). Cf. A110441. (End)
From G. C. Greubel, Oct 01 2022: (Start)
T(n, k) = binomial(n,k)*Sum_{j=0..floor((n-k)/2)} 2^j*binomial(2*j, j)*binomial(n-k, 2*j)/binomial(n, j).
T(n, k) = binomial(n, k)*Hypergeometric2F1([(k-n)/2, (k-n+1)/2], [-2*n], -8).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006130(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000045(n+1). (End)

A367211 Triangular array read by rows: T(n, k) = binomial(n, k) * A000129(n - k) for 0 <= k < n.

Original entry on oeis.org

1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

T(n, k) are the coefficients of the polynomials p(1, x) = 1, p(2, x) = 2 + 2*x, p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where u = p(2, x), v = 1 - 2*x - x^2.
Because (p(n, x)) is a strong divisibility sequence, for each integer k, the sequence (p(n, k)) is a strong divisibility sequence of integers.

Examples

			First nine rows:
  [n\k] 0     1     2     3     4     5    6   7  8
  [1]   1;
  [2]   2     2;
  [3]   5     6    3;
  [4]  12    20    12     4;
  [5]  29    60    50    20     5;
  [6]  70   174   180   100    30     6;
  [7] 169   490   609   420   175    42   7;
  [8] 408  1352  1960  1624   840   280   56   8;
  [9] 985  3672  6084  5880  3654  1512  420  72  9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
		

Crossrefs

Cf. A000129 (column 1, Pell numbers), A361732 (column 2), A000027 (T(n,n-1)), A007070 (row sums, p(n,1)), A077957 (alternating row sums, p(n,-1)), A081179 (p(n,2)), A077985 (p(n,-2)), A081180 (p(n,3)), A007070 (p(n,-3)), A081182 (p(n,4)), A094440, A367208, A367209, A367210.

Programs

  • Maple
    P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
    T := (n, k) -> P(n - k) * binomial(n, k):
    for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
    # (after Werner Schulte)  Peter Luschny, Nov 24 2023
  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    (* Or: *)
    T[n_, k_] := Module[{P},
      P[m_] := P[m] = If[m <= 1, m, 2*P[m - 1] + P[m - 2]];
      P[n - k] * Binomial[n, k] ];
    Table[T[n, k], {n, 1, 9}, {k, 0, n - 1}]  (* Peter Luschny, Mar 07 2025 *)

Formula

p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where p(1, x) = 1, p(2, x) = 2 + 2*x, u = p(2, x), and v = 1 - 2*x - x^2.
p(n, x) = k*(b^n - c^n), where k = sqrt(1/8), b = x + 1 - sqrt(2), c = x + 1 + sqrt(2).
From Werner Schulte, Nov 24 2023 and Nov 25 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n-1} T(n, k) * x^k satisfy the equation p'(n, x) = n * p(n-1, x) where p' is the first derivative of p.
T(n, k) = T(n-1, k-1) * n / k for 0 < k < n and T(n, 0) = A000129(n) for n > 0.
T(n, k) = A000129(n-k) * binomial(n, k) for 0 <= k < n.
G.f.: t / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)

Extensions

New name using a formula of Werner Schulte by Peter Luschny, Mar 07 2025

A032085 Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of induced subgraphs with odd number of edges in the path graph P(n) if n>0. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
A common recurrence of the bisections A020522 and A006516 means a(n+4) = 6*a(n+2) - 8*a(n), n>1. - Yosu Yurramendi, Aug 07 2008
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A005418, A016116. Essentially the same as A122746.
Row sums of triangle A034877.

Programs

Formula

"BHK" (reversible, identity, unlabeled) transform of 2, 0, 0, 0, ...
a(n) = 2^(n-1)-2^floor((n-1)/2), n > 1. - Vladeta Jovovic, Nov 11 2001
G.f.: 2*x+x^2/((1-2*x)*(1-2*x^2)). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
a(n) = A005418(n+1)-A016116(n+2), n>1. - Yosu Yurramendi, Aug 07 2008
a(n+1) = A077957(n) + 2*a(n), n>1. a(n+2) = A000079(n+1) + 2*a(n), n>1. - Yosu Yurramendi, Aug 10 2008
First differences: a(n+1)-a(n) = A007179(n) = A156232(n+2)/4, n>1. - Paul Curtz, Nov 16 2009
a(n) = 2*(a(n-1) bitwiseOR a(n-2)), n>3. - Pierre Charland, Dec 12 2010
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Jul 03 2020

A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Riordan array (1/(1-x-x^2), x(1-x)/(1-x-x^2)). Row sums are A000079. Diagonal sums are A006053(n+2). - Paul Barry, Nov 01 2006
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 05 2012
Mirror image of triangle in A208342. - Philippe Deléham, Mar 05 2012
A053538 is jointly generated with A076791 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1, for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section at A076791. - Clark Kimberling, Mar 08 2012
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
1, -2, -1, 1;
3, 1, -3, -1, 1;
1, 6, 1, -4, -1, 1;
-7, 4, 10, 1, -5, -1, 1;
-13, -13, 8, 15, 1, -6, -1, 1;
3, -31, -23, 13, 21, 1, -7, -1, 1; - R. J. Mathar, Mar 15 2013
Also appears to be the number of subsets of {1..n} containing n with k maximal anti-runs of consecutive elements increasing by more than 1. For example, the subset {1,3,6,7,11,12} has maximal anti-runs ((1,3,6),(7,11),(12)) so is counted under a(12,3). For runs instead of anti-runs we get A202064. - Gus Wiseman, Jun 26 2025

Examples

			n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}
Triangle begins :
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1, 1;
   5,  5,  4, 1, 1;
   8, 10,  7, 5, 1, 1;
  13, 18, 16, 9, 6, 1, 1;
...
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,  1;
  0,  3,  3,  1, 1;
  0,  5,  5,  4, 1, 1;
  0,  8, 10,  7, 5, 1, 1;
  0, 13, 18, 16, 9, 6, 1, 1;
		

Crossrefs

Column k = 1 is A000045.
Row sums are A000079.
Column k = 2 is A010049.
For runs instead of anti-runs we have A202064.
For integer partitions see A268193, strict A384905, runs A116674.
A034839 counts subsets by number of maximal runs.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.
A384893 counts subsets by number of maximal anti-runs.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j->  Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
  • Magma
    [[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
    
  • Maple
    a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):
    seq(seq(a(n,m), m=0..n), n=0..12);  # Alois P. Heinz, Sep 19 2013
  • Mathematica
    Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
  • PARI
    {T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
    

Formula

From Philippe Deléham, Mar 05 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: 1/(1-(1+y)*x-(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. (End)

A228405 Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0

Views

Author

Richard R. Forberg, Aug 21 2013

Keywords

Comments

The left column, A(n,0), is A000129(n), Pell Numbers.
The top row, A(0,k), is A077957(k) plus an initial 0, which is the inverse binomial transform of A000129.
These may be considered initializing values, or results, depending the perspective taken, since there are several ways to generate the array. See Formula section for details.
The columns of the array hold all values, in sequential order, of numbers m such that 2m^2 + 2^k or 2m^2 - 2^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for k+1.
For example A(n,0) are numbers such that 2m^2 +- 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 2m^2 +- 2 are squares, with those square roots in A(n,2), etc.
A(n, k)/A(n,k-2) = 2; A(n,k)/A(n,k-1) converges to sqrt(2) for large n.
A(n,k)/A(n-1,k) converges to 1 + sqrt(2) for large n.
The other columns of this array hold current OEIS sequences as follows:
A(n,1) = A001333(n); A(n,2) = A163271(n); A(n,3) = A002203(n);
Bisections of these column-oriented sequences also appear in the OEIS, corresponding to the even and odd rows of the array, which in turn correspond to the two different recursive square root equations in the formula section below.
Farey fraction denominators interleave columns 0 and 1, and the corresponding numerators interleave columns 1 and 2, for approximating sqrt(2). See A002965 and A119016, respectively.
The other rows of this array hold current OEIS sequences as follows:
A(1,k) = A016116(k); A(2,k) = A029744(k) less the initial 1;
A(3,k) = A070875(k); A(4,k) = A091523(k) less the initial 8.
The Pell Numbers (A000219) are the only initializing set of numbers where the two recursive square root equations (see below) produce exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.
The numbers in this array, especially the first three columns, are also integer square roots of these expressions: floor(m^2/2), floor(m^2/2 + 1), floor (m^2/2 - 1). See A227972 for specific arrangements and relationships. Also: ceiling(m^2/2), ceiling(m^2/2 + 1), ceiling (m^2/2 -1), m^2+1, m^2-1, m^2*(m^2-1)/2, m^2*(m^2-1)/2, in various different arrangements. Many of these involve: A000129(2n)/2 = A001109(n).
A001109 also appears when multiplying adjacent columns: A(n,k) * A(n,k+1) = (k+1) * A001109(n), for all k.

Examples

			With row # as n. and column # as k, and n, k =>0, the array begins:
0,     1,     0,     2,     0,     4,     0,     8, ...
1,     1,     2,     2,     4,     4,     8,     8, ...
2,     3,     4,     6,     8,    12,    16,    24, ...
5,     7,    10,    14,    20,    28,    40,    56, ...
12,   17,    24,    34,    48,    68,    96,   136, ...
29,   41,    58,    82,   116,   164,   232,   328, ...
70,   99,   140,   198,   280,   396,   560,   792, ...
169,  239,  338,   478,   676,   956,  1352,  1912, ...
408,  577,  816,  1154,  1632,  2308,  3264,  4616, ...
		

Crossrefs

Formula

If using the left column and top row to initialize: A(n,k) = A(n,k-1) + A(n-1,k-1).
If using only the top row to initialize, then each column for k = i is the binomial transform of A(0,k) restricted to k=> i as input to the transform with an appropriate down shift of index. The inverse binomial transform with a similar condition can produce each row from A000129.
If using only the first two rows to initialize then the Pell equation produces each column, as: A(n,k) = 2*A(n-1, k) + A(n-2, k).
If using only the left column (A000219(n) = Pell Numbers) to initialize then the following two equations will produce each row:
A(n,k) = sqrt(2*A(n,k-1) + (-2)^(k-1)) for even rows
A(n,k) = sqrt(2*A(n,k-1) - (-2)^(k-1)) for odd rows.
Interestingly, any portion of the array can also be filled "backwards" given the top row and any column k, using only: A(n,k-1) = A(n-1,k-1) + A(n-1, k), or if given any column and its column number by rearranging the sqrt recursions above.

A135530 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3), with a(0)=2, a(1)=1.

Original entry on oeis.org

2, 1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576
Offset: 0

Views

Author

Paul Curtz, Feb 20 2008

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x-2)/(2x^2-1),{x,0,40}],x]
    Transpose[NestList[{#[[2]],Last[#],Last[#]+2#[[2]]-2First[#]}&,{2,1,4},45]][[1]]  (* Harvey P. Dale, Mar 05 2011 *)
    LinearRecurrence[{0, 2}, {2, 1}, 25] (* G. C. Greubel, Oct 17 2016 *)
  • PARI
    a(n)=1<<(1-n%2+n\2) \\ Charles R Greathouse IV, Jun 01 2011

Formula

From R. J. Mathar, Feb 23 2008: (Start)
O.g.f.: -(2+x)/(2*x^2-1).
a(n) = 2*a(n-2).
a(n) = A077957(n+1) + A077957(n+2). (End)
E.g.f.: (1/sqrt(2))*( 2*sqrt(2)*cosh(sqrt(2)*x) + sinh(sqrt(2)*x) ). - G. C. Greubel, Oct 17 2016
a(n) = A076736(n+4) for n >= 0. - Georg Fischer, Nov 03 2018
From Amiram Eldar, Feb 02 2024: (Start)
Sum_{n>=0} 1/a(n) = 3.
Sum_{n>=0} (-1)^(n+1)/a(n) = 1. (End)

Extensions

More terms from R. J. Mathar, Feb 23 2008

A083878 a(0)=1, a(1)=3, a(n) = 6*a(n-1) - 7*a(n-2), n >= 2.

Original entry on oeis.org

1, 3, 11, 45, 193, 843, 3707, 16341, 72097, 318195, 1404491, 6199581, 27366049, 120799227, 533233019, 2353803525, 10390190017, 45864515427, 202455762443, 893682966669, 3944907462913, 17413664010795, 76867631824379
Offset: 0

Views

Author

Paul Barry, May 08 2003

Keywords

Comments

Binomial transform of A006012. Second binomial transform of A001333.
Third binomial transform of A077957. Inverse binomial transform of A083879. - Philippe Deléham, Dec 01 2008

Crossrefs

Programs

  • Mathematica
    f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* Robert G. Wilson v, Oct 31 2010 *)

Formula

a(n) = ((3 - sqrt(2))^n + (3 + sqrt(2))^n)/2;
a(n) = Sum_{k=0..n} C(n, 2k)*3^(n-2k)*2^k;
G.f.: (1-3x)/(1-6x+7x^2);
E.g.f.: exp(3x)*cosh(x*sqrt(2)).
a(n) = Sum_{k=0..n} C(n, k)*2^((n-k)/2)(1+(-1)^(n-k))*3^k/2. - Paul Barry, Jan 22 2005
a(n) = Sum_{k=0..n} A098158(n,k)*3^(2k-n)*2^(n-k). - Philippe Deléham, Dec 01 2008
a(n) = A081179(n+1) - 3*A081179(n). - R. J. Mathar, Nov 10 2013
a(n) = Sum_{k=1..n} A056241(n, k) * 2^(k-1). - J. Conrad, Nov 23 2022

A219946 Number A(n,k) of tilings of a k X n rectangle using right trominoes and 2 X 2 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 4, 4, 4, 4, 0, 1, 1, 0, 5, 0, 6, 0, 5, 0, 1, 1, 0, 6, 8, 16, 16, 8, 6, 0, 1, 1, 0, 13, 0, 37, 0, 37, 0, 13, 0, 1, 1, 0, 16, 16, 92, 136, 136, 92, 16, 16, 0, 1, 1, 0, 25, 0, 245, 0, 545, 0, 245, 0, 25, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Examples

			A(4,4) = 6, because there are 6 tilings of a 4 X 4 rectangle using right trominoes and 2 X 2 tiles:
  .___.___. .___.___. .___.___. .___.___. .___.___. .___.___.
  | . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. |
  |___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_|
  | . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| |
  |___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
Square array A(n,k) begins:
  1,  1,  1,  1,   1,    1,     1,      1,       1,        1, ...
  1,  0,  0,  0,   0,    0,     0,      0,       0,        0, ...
  1,  0,  1,  2,   1,    4,     5,      6,      13,       16, ...
  1,  0,  2,  0,   4,    0,     8,      0,      16,        0, ...
  1,  0,  1,  4,   6,   16,    37,     92,     245,      560, ...
  1,  0,  4,  0,  16,    0,   136,      0,    1128,      384, ...
  1,  0,  5,  8,  37,  136,   545,   2376,   10534,    46824, ...
  1,  0,  6,  0,  92,    0,  2376,   5504,   71248,   253952, ...
  1,  0, 13, 16, 245, 1128, 10534,  71248,  652036,  5141408, ...
  1,  0, 16,  0, 560,  384, 46824, 253952, 5141408, 44013568, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A000007, A052947, A077957, A165799, A190759, A219947, A219948, A219949, A219950, A219951.
Main diagonal gives: A219952.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od;
             `if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+
             `if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k, t}, If[Max[l] > n , 0 , If [n == 0 || l == {},1 , If[Min[l] > 0, t = Min[l]; b[n-t, l-t], For[k = 1, k <= Length[l], k++, If[l[[k]] == 0 , Break[]]]; If[k > 1 && l[[k-1]] == 1, b[n, ReplacePart[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]+If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0]]]]]; a[n_, ] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover, Nov 26 2013, translated from Alois P. Heinz's Maple program *)

A367301 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 3, 3, 10, 16, 8, 33, 75, 63, 21, 109, 320, 380, 220, 55, 360, 1296, 1980, 1620, 720, 144, 1189, 5070, 9459, 9940, 6255, 2262, 377, 3927, 19353, 42615, 54561, 44085, 22635, 6909, 987, 12970, 72532, 184034, 277480, 272854, 179972, 78230, 20672, 2584
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
     1
     3      3
    10     16      8
    33     75     63     21
   109    320    380    220     55
   360   1296   1980   1620    720    144
  1189   5070   9459   9940   6255   2262   377
  3927  19353  42615  54561  44085  22635  6909  987
Row 4 represents the polynomial p(4,x) = 33 + 75*x + 63*x^2 + 21*x^3, so (T(4,k)) = (33,75,63,21), k=0..3.
		

Crossrefs

Cf. A006190 (column 1); A001906 (p(n,n-1)); A154244 (row sums, p(n,1)); A077957 (alternating row sums, p(n,-1)); A190984 (p(n,2)); A006190 (signed, p(n,-2)); A154244 (p(n,-3)); A190984 (p(n,-4)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 3 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 3 + 3*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(13 + 10*x + 5*x^2)), b = (1/2) (3*x + 3 + 1/k), c = (1/2) (3*x + 3 - 1/k).
Previous Showing 11-20 of 59 results. Next