A092362 Number of partitions of n^2 into squares greater than 1.
1, 0, 1, 1, 2, 3, 5, 8, 11, 28, 44, 94, 167, 354, 643, 1314, 2412, 4792, 8981, 17374, 32566, 62008, 115702, 217040, 402396, 745795, 1372266, 2517983, 4595652, 8354350, 15125316, 27265107, 48972467, 87584837, 156119631, 277152178, 490437445, 864534950
Offset: 0
Keywords
Examples
a(6) = 5: 6^2 = 36 = 16+16+4 = 16+4+4+4+4+4 = 9+9+9+9 = 4+4+4+4+4+4+4+4+4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:=proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i)))) end: a:= n-> b(n^2, n): seq(a(n), n=0..50); # Alois P. Heinz, Apr 15 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Formula
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/3)). - Vaclav Kotesovec, Apr 10 2017
Extensions
Corrected a(0) and more terms from Alois P. Heinz, Apr 15 2013
Comments