cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A363514 Sum of divisors of 3*n-1 of form 3*k+1.

Original entry on oeis.org

1, 1, 5, 1, 8, 1, 15, 1, 14, 1, 21, 8, 20, 1, 27, 1, 36, 1, 40, 1, 32, 14, 39, 1, 38, 8, 71, 1, 44, 1, 51, 20, 57, 1, 70, 1, 88, 1, 63, 8, 62, 26, 85, 1, 68, 1, 120, 14, 74, 1, 100, 32, 80, 8, 87, 1, 130, 1, 131, 1, 112, 38, 99, 1, 98, 1, 180, 8, 104, 20, 111, 44, 110, 14, 168, 1, 172, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n - 1, # &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    a(n) = sumdiv(3*n-1, d, (d%3==1)*d);

Formula

a(n) = A078181(3*n-1).
G.f.: Sum_{k>0} (3*k-2) * x^(2*k-1)/(1 - x^(3*k-2)).

A363901 Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 3, 1, 5, 1, 3, 6, 4, 1, 9, 1, 1, 8, 7, 4, 9, 1, 3, 10, 6, 1, 16, 1, 5, 12, 9, 1, 13, 4, 3, 14, 8, 6, 21, 1, 4, 16, 11, 1, 17, 1, 9, 21, 14, 1, 26, 1, 1, 20, 16, 8, 21, 1, 7, 22, 12, 4, 31, 6, 9, 24, 15, 1, 32, 1, 3, 26, 14, 10, 36, 4, 6, 28, 27, 1, 29, 1, 16, 30, 16, 1, 41, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 2 &, Mod[#, 3] == 1 &]/3; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*(d+2))/3;

Formula

a(n) = (1/3) * Sum_{d|n, d==1 mod 3} (d+2) = (2 * A001817(n) + A078181(n))/3.
G.f.: Sum_{k>0} k * x^(3*k-2) / (1 - x^(3*k-2)).

A363889 Sum of divisors of 3*n-2 of form 3*k+1.

Original entry on oeis.org

1, 5, 8, 11, 14, 21, 20, 23, 26, 40, 32, 35, 38, 55, 44, 47, 57, 70, 56, 59, 62, 85, 68, 88, 74, 100, 80, 83, 86, 115, 112, 95, 98, 140, 104, 107, 110, 168, 116, 119, 122, 160, 128, 154, 160, 175, 140, 143, 146, 190, 152, 184, 158, 231, 164, 167, 183, 220, 208, 179, 182, 235, 188
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n - 2, # &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, (d%3==1)*d);

Formula

a(n) = A078181(3*n-2).
G.f.: Sum_{k>0} (3*k-2) * x^k/(1 - x^(3*k-2)).

A082050 Sum of divisors of n that are not of the form 3k+1.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 0, 10, 12, 7, 11, 23, 0, 16, 23, 10, 17, 38, 0, 27, 24, 13, 23, 55, 5, 28, 39, 16, 29, 61, 0, 42, 47, 19, 40, 86, 0, 40, 42, 35, 41, 88, 0, 57, 77, 25, 47, 103, 0, 57, 71, 28, 53, 119, 16, 80, 60, 31, 59, 153, 0, 64, 96, 42, 70, 121, 0, 87, 95, 56, 71, 190
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:=Total[Select[Divisors[n],!IntegerQ[(#-1)/3]&]]; Array[sd,80] (* Harvey P. Dale, May 04 2011 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=1,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-1)*x^(3*n-1)/(1-x^(3*n-1)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf);  concat([0],v)
    \\ Joerg Arndt, May 17 2013

Formula

a(A004611(n)) = 0.
G.f.: Sum_{k>=1} x^(2*k)*(2+3*x^k+x^(3*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Apr 11 2006
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A082051 Sum of divisors of n that are not of the form 3k+2.

Original entry on oeis.org

1, 1, 4, 5, 1, 10, 8, 5, 13, 11, 1, 26, 14, 8, 19, 21, 1, 37, 20, 15, 32, 23, 1, 50, 26, 14, 40, 40, 1, 65, 32, 21, 37, 35, 8, 89, 38, 20, 56, 55, 1, 80, 44, 27, 73, 47, 1, 114, 57, 36, 55, 70, 1, 118, 56, 40, 80, 59, 1, 141, 62, 32, 104, 85, 14, 131, 68, 39, 73, 88, 1, 185
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 2) / 3]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=2,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-2)*x^(3*n-2)/(1-x^(3*n-2)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf)
    \\ Joerg Arndt, May 17 2013

Formula

a(A003627(n)) = 1.
G.f.: Sum_{k>=1} x^k*(1 + 3*x^(2*k) + 2*x^(3*k))/(1 - x^(3*k))^2. - Ilya Gutkovskiy, Sep 12 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A082052 Sum of divisors of n that are not of the form 4k+1.

Original entry on oeis.org

0, 2, 3, 6, 0, 11, 7, 14, 3, 12, 11, 27, 0, 23, 18, 30, 0, 29, 19, 36, 10, 35, 23, 59, 0, 28, 30, 55, 0, 66, 31, 62, 14, 36, 42, 81, 0, 59, 42, 84, 0, 74, 43, 83, 18, 71, 47, 123, 7, 62, 54, 84, 0, 110, 66, 119, 22, 60, 59, 162, 0, 95, 73, 126, 0, 110, 67, 108, 26, 138, 71
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Comments

a(A004613(n))=0.

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 1) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
    Table[DivisorSum[n,#&,(!IntegerQ[(#-1)/4]&)],{n,80}] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%4!=1,d))","))

Formula

G.f.: Sum_{k>=1} x^(2*k)*(2 + 3*x^k + 4*x^(2*k) + 2*x^(4*k) + x^(5*k))/(1 - x^(4*k))^2. - Ilya Gutkovskiy, Sep 12 2019

A082053 Sum of divisors of n that are not of the form 4k+3.

Original entry on oeis.org

1, 3, 1, 7, 6, 9, 1, 15, 10, 18, 1, 25, 14, 17, 6, 31, 18, 36, 1, 42, 22, 25, 1, 57, 31, 42, 10, 49, 30, 54, 1, 63, 34, 54, 6, 88, 38, 41, 14, 90, 42, 86, 1, 73, 60, 49, 1, 121, 50, 93, 18, 98, 54, 90, 6, 113, 58, 90, 1, 150, 62, 65, 31, 127, 84, 130, 1, 126, 70, 102, 1, 192
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Comments

a(A002145(n))=1.

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 3) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%4!=3,d))","))

Formula

G.f.: Sum_{k>=1} x^k*(1 + 2*x^k + 4*x^(3*k) + 3*x^(4*k) + 2*x^(5*k))/(1 - x^(4*k))^2. - Ilya Gutkovskiy, Sep 12 2019

A357912 a(n) = Sum_{d|n, d==1 (mod 11)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 46, 24, 1, 13, 1, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 68, 35, 24, 1, 1, 13, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 13, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2023

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8), this sequence (k=11).
Cf. A357911.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[#, 11] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (Mod(d, 11)==1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=0, N, (11*k+1)*x^(11*k+1)/(1-x^(11*k+1))))

Formula

G.f.: Sum_{k>=0} (11*k+1) * x^(11*k+1)/(1 - x^(11*k+1)).

A326503 Expansion of Sum_{k>=1} x^k * (1 - x^(2*k)) / (1 + x^k + x^(2*k))^2.

Original entry on oeis.org

1, -1, 1, 3, -4, -1, 8, -5, 1, 4, -10, 3, 14, -8, -4, 11, -16, -1, 20, -12, 8, 10, -22, -5, 21, -14, 1, 24, -28, 4, 32, -21, -10, 16, -32, 3, 38, -20, 14, 20, -40, -8, 44, -30, -4, 22, -46, 11, 57, -21, -16, 42, -52, -1, 40, -40, 20, 28, -58, -12, 62, -32, 8, 43, -56, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 12 2019

Keywords

Crossrefs

Cf. A002129, A050457, A078181, A078182, A078708, A162397 (Moebius transform), A326401.

Programs

  • Mathematica
    nmax = 66; CoefficientList[Series[Sum[x^k (1 - x^(2 k))/(1 + x^k + x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{1}, Mod[#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[#, 3]] &], {n, 1, 66}]
    f[p_, e_] := If[Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), ((-p)^(e + 1) - 1)/(-p - 1)]; f[3, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    a(n)={sumdiv(n, d, d*((d+1)%3-1))} \\ Andrew Howroyd, Sep 12 2019

Formula

a(n) = Sum_{d|n, d==1 (mod 3)} d - Sum_{d|n, d==2 (mod 3)} d.
a(n) = A078181(n) - A078182(n).
Multiplicative with a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1 (mod 3) and a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 2 (mod 3). - Amiram Eldar, Nov 28 2023
Previous Showing 11-19 of 19 results.