A300797
Number of strict trees of weight 2n + 1 in which all outdegrees and all leaves are odd.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 6, 11, 17, 34, 59, 118, 213, 424, 799, 1606, 3072, 6216, 12172, 24650, 48710, 99333, 198237, 405526, 815267, 1673127, 3387165, 6974702, 14179418, 29285048, 59841630, 123848399, 253927322, 526936694, 1084022437, 2253778793, 4649778115
Offset: 0
The a(7) = 6 strict trees: 15, (11 3 1), (9 5 1), (7 5 3), ((7 3 1) 3 1), ((5 3 1) 5 1).
Cf.
A000009,
A000992,
A032305,
A063834,
A078408,
A089259,
A196545,
A273873,
A279785,
A289501,
A298118,
A300301,
A300352,
A300353,
A300436,
A300439,
A300440,
A300652.
-
a[n_]:=a[n]=If[OddQ[n],1,0]+Sum[Times@@a/@ptn,{ptn,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
Table[a[n],{n,1,60,2}]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))) - prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018
A318156
Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0
From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
(2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) (9,8)
(4,1) (5,2) (6,3) (7,4) (8,5) (9,6) (10,7)
(6,1) (7,2) (8,3) (9,4) (10,5) (11,6)
(8,1) (9,2) (10,3) (11,4) (12,5)
(10,1) (11,2) (12,3) (13,4)
(12,1) (13,2) (14,3)
(6,4,2,1) (14,1) (15,2)
(6,4,3,2) (16,1)
(8,4,2,1) (6,5,4,2)
(8,4,3,2)
(8,6,2,1)
(10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives
A036469.
- The non-strict version is
A306145.
- Allowing any number of odd parts gives
A343942 (odd bisection of
A067661).
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
Cf.
A000070,
A030229,
A035294,
A058696,
A078616,
A087447,
A152146,
A236559,
A343941,
A344611,
A344739.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..60);
-
nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)
A358825
Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts.
Original entry on oeis.org
1, 1, 1, 4, 4, 11, 20, 35, 56, 113, 207, 326, 602, 985, 1777, 3124, 5115, 8523, 15011, 24519, 41571, 71096, 115650, 191940, 320651, 530167, 865781, 1442059, 2358158, 3833007, 6325067, 10243259, 16603455, 27151086, 43734197, 71032191, 115091799, 184492464
Offset: 0
The a(1) = 1 through a(5) = 11 twice-partitions:
(1) (1)(1) (3) (3)(1) (5)
(21) (21)(1) (32)
(111) (111)(1) (41)
(1)(1)(1) (1)(1)(1)(1) (221)
(311)
(2111)
(11111)
(3)(1)(1)
(21)(1)(1)
(111)(1)(1)
(1)(1)(1)(1)(1)
For odd parts instead of sums we have
A270995.
For distinct instead of odd sums we have
A271619.
Requiring odd length, odd lengths, and odd parts gives
A279374 aerated.
For odd lengths instead of sums we have
A358334.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Times@@Total/@#]&]],{n,0,10}]
A358826
Number of ways to choose a sequence of partitions, one of each part of an odd-length partition of 2n+1 into odd parts.
Original entry on oeis.org
1, 4, 11, 35, 113, 326, 985, 3124, 8523, 24519, 71096, 191940, 530167, 1442059, 3833007, 10243259, 27151086, 71032191, 184492464, 478339983, 1227208513, 3140958369, 8016016201, 20210235189, 50962894061, 127936646350, 319022819270, 794501931062, 1969154638217
Offset: 0
The a(1) = 1 through a(5) = 11 twice-partitions:
(1) (3) (5)
(21) (32)
(111) (41)
(1)(1)(1) (221)
(311)
(2111)
(11111)
(3)(1)(1)
(21)(1)(1)
(111)(1)(1)
(1)(1)(1)(1)(1)
For odd parts instead of length and sums we have
A270995.
Requiring odd lengths and odd parts gives
A279374 aerated.
This is the case of
A358824 with odd sums.
This is the odd-length case (hence odd bisection) of
A358825.
For odd lengths (instead of length) we have
A358827.
For odd lengths instead of sums we have
A358834.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Total/@#]&]],{n,1,15,2}]
A358827
Number of twice-partitions of n into partitions with all odd lengths and sums.
Original entry on oeis.org
1, 1, 1, 3, 3, 7, 11, 19, 27, 51, 83, 128, 208, 324, 542, 856, 1332, 2047, 3371, 5083, 8009, 12545, 19478, 29770, 46038, 70777, 108627, 167847, 255408, 388751, 593475, 901108, 1361840, 2077973, 3125004, 4729056, 7146843, 10732799, 16104511, 24257261, 36305878
Offset: 0
The a(1) = 1 through a(6) = 11 twice-partitions:
(1) (1)(1) (3) (3)(1) (5) (3)(3)
(111) (111)(1) (221) (5)(1)
(1)(1)(1) (1)(1)(1)(1) (311) (111)(3)
(11111) (221)(1)
(3)(1)(1) (3)(111)
(111)(1)(1) (311)(1)
(1)(1)(1)(1)(1) (111)(111)
(11111)(1)
(3)(1)(1)(1)
(111)(1)(1)(1)
(1)(1)(1)(1)(1)(1)
This is the case of
A358334 with odd sums.
This is the case of
A358825 with odd lengths.
The case of odd length is the odd bisection.
For odd parts instead of lengths and sums we have
A270995.
Requiring odd parts also gives
A279374 aerated.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&&OddQ[Times@@Total/@#]&]],{n,0,10}]
A365826
Number of strict integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0
The a(6) = 1 through a(12) = 7 strict partitions:
(6) (7) (8) (9) (10) (11) (12)
(4,2,1) (5,2,1) (4,3,2) (6,3,1) (5,4,2) (5,4,3)
(5,3,1) (7,2,1) (6,3,2) (7,3,2)
(6,2,1) (4,3,2,1) (6,4,1) (7,4,1)
(7,3,1) (8,3,1)
(8,2,1) (9,2,1)
(5,3,2,1) (5,4,2,1)
The complement is counted by
A365659.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
Cf.
A004526,
A005408,
A008967,
A035363,
A058984,
A086543,
A100959,
A344415,
A365376,
A365377,
A365543.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
A366527
Number of integer partitions of 2n containing at least one even part.
Original entry on oeis.org
0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(2) (4) (6) (8)
(22) (42) (44)
(211) (222) (62)
(321) (332)
(411) (422)
(2211) (431)
(21111) (521)
(611)
(2222)
(3221)
(4211)
(22211)
(32111)
(41111)
(221111)
(2111111)
This is the even bisection of
A047967.
A006477 counts partitions w/ at least one odd and even part, ranks
A366532.
-
Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]
A053197
Number of level partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378
Offset: 0
-
b:= proc(n, i, p) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i)))
end:
a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
)(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 11 2015
-
a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
A078409
Number of ways to partition 4*n+1 into distinct positive integers.
Original entry on oeis.org
1, 3, 8, 18, 38, 76, 142, 256, 448, 760, 1260, 2048, 3264, 5120, 7917, 12076, 18200, 27130, 40026, 58499, 84756, 121792, 173682, 245920, 345856, 483330, 671418, 927406, 1274118, 1741521, 2368800, 3207086, 4322816, 5802008, 7755776
Offset: 0
Original entry on oeis.org
0, 2, 4, 7, 11, 17, 26, 37, 54, 76, 106, 145, 199, 266, 357, 472, 621, 809, 1053, 1354, 1740, 2218, 2818, 3559, 4485, 5616, 7018, 8728, 10826, 13373, 16484, 20236, 24793, 30275, 36886, 44810, 54329, 65683, 79265, 95419, 114650, 137447, 164496, 196445, 234221
Offset: 0
-
b:= proc(n, i) option remember; `if`(i>n, 0,
`if`(irem(n, i)=0, 1, 0)+add(`if`(irem(j, 2)=0,
b(n-i*j, i+1), 0), j=0..n/i))
end:
a:= n-> b(2*n, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[If[Mod[j, 2] ==0, b[n-i*j, i+1], 0], {j, 0, n/i}]]; a[n_] := b[2*n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 17 2016, after Alois P. Heinz *)
Comments