A078951
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,6,6).
Original entry on oeis.org
3299, 5099, 6359, 19469, 30089, 53609, 63689, 71339, 77549, 80909, 105359, 119549, 152939, 186869, 292469, 302969, 344249, 348239, 408209, 415949, 652739, 707669, 737039, 792689, 818339, 831539, 852749, 886979, 910199, 974969, 1072829, 1152629, 1290629, 1368329
Offset: 1
5099 is in the sequence since 5099, 5101 = 5099 + 2, 5107 = 5099 + 8, 5113 = 5099 + 14 and 5119 = 5099 + 20 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 6, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078952
Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,4,6).
Original entry on oeis.org
13, 37, 223, 1087, 1423, 1483, 2683, 4783, 20743, 27733, 29017, 33343, 33613, 35527, 42457, 44263, 45817, 55813, 93487, 108877, 110917, 113143, 118897, 151237, 165703, 187123, 198823, 203653, 205417, 221713, 234187, 234457, 258607, 276817, 284227, 289837, 308923
Offset: 1
37 is in the sequence since 37, 41 = 37 + 4, 43 = 37 + 6, 47 = 37 + 10 and 53 = 37 + 16 are consecutive primes.
-
K:=2*10^7+1;; # to get all terms <= K.
P:=Filtered([1,3..K],IsPrime);; I:=[4,2,4,6];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
P3:=List(Positions(P2,I),i->P[i]); # Muniru A Asiru, Aug 21 2017
-
for i from 1 to 10^7 do if ithprime(i+1)=ithprime(i)+4 and ithprime(i+2)=ithprime(i)+6 and ithprime(i+3)=ithprime(i)+10 and ithprime(i+4)=ithprime(i)+16 then print(ithprime(i)); fi; od; # Muniru A Asiru, Aug 21 2017
-
With[{s = Differences@ Prime@ Range[10^5]}, Prime[SequencePosition[s, {4, 2, 4, 6}][[All, 1]]]] (* Michael De Vlieger, Aug 21 2017 *)
-
lista(nn) = forprime(p=3, nn, if(nextprime(p+1)==p+4 && nextprime(p+5)==p+6 && nextprime(p+7)==p+10 && nextprime(p+11)==p+16, print1(p, ", "))); \\ Altug Alkan, Aug 21 2017
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 2 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078953
Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,6,4).
Original entry on oeis.org
67, 2377, 21487, 31177, 65167, 67927, 81547, 139297, 166597, 178597, 185527, 305017, 305407, 321817, 341947, 390487, 427417, 448867, 547357, 600877, 635347, 668527, 693727, 697507, 752287, 764887, 783787, 812347, 819487, 877867, 1196857, 1229197, 1262617, 1279177
Offset: 1
67 is in the sequence since 67, 71 = 67 + 4, 73 = 67 + 6, 79 = 67 + 12 and 83 = 67 + 16 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {4,2,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078954
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,2,4).
Original entry on oeis.org
1597, 3907, 12097, 12907, 38317, 58897, 65827, 90007, 90187, 112237, 129277, 134077, 140407, 176317, 204427, 336757, 374977, 390097, 394717, 435637, 486667, 538147, 543997, 588937, 618577, 678637, 702337, 922627, 990277, 996157, 1086247, 1248337, 1326037, 1348537
Offset: 1
90007 is in the sequence since 90007, 90011 = 90007 + 4, 90017 = 90007 + 10, 90019 = 90007 + 12 and 90023 = 90007 + 16 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[85000]],5,1],Differences[#] == {4,6,2,4}&]][[1]] (* Harvey P. Dale, Sep 30 2012 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078955
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,2,6).
Original entry on oeis.org
19, 1279, 1609, 2539, 3529, 4639, 5839, 15259, 19069, 32359, 71329, 75979, 88789, 97369, 112909, 113149, 130639, 135589, 138559, 191449, 229759, 246919, 290659, 312199, 346429, 349369, 357649, 384469, 396619, 416389, 418339, 421699, 433249, 435559, 450799, 460969
Offset: 1
19 is in the sequence since 19, 23 = 19 + 4, 29 = 19 + 10, 31 = 19 + 12 and 37 = 19 + 18 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[40000]],5,1],Differences[#]=={4,6,2,6}&]][[1]] (* Harvey P. Dale, Feb 03 2011 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078956
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,6,2).
Original entry on oeis.org
43, 163, 643, 1213, 2953, 4003, 7573, 11923, 14533, 25453, 26683, 26713, 29863, 41593, 48523, 61543, 68473, 150193, 151153, 172423, 206803, 227593, 290023, 302563, 338563, 343813, 346543, 428023, 527053, 529033, 540373, 547483, 551713, 570403, 577513, 622603, 628993
Offset: 1
43 is in the sequence since 43, 47 = 43 + 4, 53 = 43 + 10, 59 = 43 + 16 and 61 = 43 + 18 are consecutive primes.
-
L:= [0$5]:
p:= 1: R:= NULL: count:= 0:
while count < 100 do
p:= nextprime(p);
L:= [L[2],L[3],L[4],L[5],p];
if L -~ L[1] = [0, 4, 10, 16, 18] then
count:= count+1;
R:= R, L[1];
fi
od:
R; # Robert Israel, Oct 17 2023
-
Select[Partition[Prime[Range[50000]],5,1],Differences[#]=={4,6,6,2}&][[All,1]] (* Harvey P. Dale, Jan 23 2021 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078957
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,6,6).
Original entry on oeis.org
12637, 14737, 15787, 17467, 78787, 95257, 104707, 120997, 154057, 243517, 250027, 252877, 351037, 357667, 443227, 496477, 501187, 593497, 624787, 696607, 750787, 917827, 949957, 1003087, 1025257, 1104097, 1109887, 1260877, 1279657, 1457857, 1517917, 1565167, 1654717
Offset: 1
15787 is in the sequence since 15787, 15791 = 15787 + 4, 15797 = 15787 + 10, 15803 = 15787 + 16 and 15809 = 15787 + 22 are consecutive primes.
-
Select[Partition[Prime[Range[10^5]],5,1],Differences[#]=={4,6,6,6}&][[All,1]] (* Harvey P. Dale, Jun 23 2019 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078958
Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,4,6).
Original entry on oeis.org
1601, 3911, 12101, 14621, 32051, 68891, 122021, 191441, 258101, 259151, 276581, 278801, 305471, 347051, 390101, 394721, 418331, 419591, 421691, 470201, 482501, 509681, 678641, 683471, 832361, 844421, 914351, 929051, 977351, 997091, 1043831, 1074701, 1104731, 1224851
Offset: 1
3911 is in the sequence since 3911, 3917 = 3911 + 6, 3919 = 3911 + 8, 3923 = 3911 + 12 and 3929 = 3911 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[82000]],5,1],Differences[#]=={6,2,4,6}&][[All,1]] (* Harvey P. Dale, Jul 09 2021 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078959
Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,6,4).
Original entry on oeis.org
23, 53, 263, 1283, 2333, 5843, 6563, 14543, 19373, 32363, 41603, 48473, 49193, 51413, 75983, 88793, 106853, 113153, 115763, 138563, 150203, 160073, 163973, 204353, 223823, 229763, 246923, 284723, 319673, 326993, 337853, 338153, 357653, 433253, 443153, 460073, 460973
Offset: 1
53 is a term since 53, 59 = 53 + 6, 61 = 53 + 8, 67 = 53 + 14 and 71 = 53 + 18 are consecutive primes.
-
l = {}; For[n = 1, n < 10^5, n++, If[Prime[n] + 6 == Prime[n + 1] \[And] Prime[n] + 8 == Prime[n + 2] \[And] Prime[n] + 14 == Prime[n + 3] \[And] Prime[n] + 18 == Prime[n + 4], AppendTo[l, Prime[n]]]]; l (* Jake Foster, Oct 27 2008 *)
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,2,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078961
Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,2,4).
Original entry on oeis.org
31, 1291, 1861, 1987, 2677, 4507, 5641, 7867, 13681, 17377, 24097, 35521, 42451, 44257, 55807, 80671, 88651, 88801, 93481, 110557, 113011, 113161, 118891, 134581, 155371, 163981, 198817, 221707, 234181, 266671, 269377, 284731, 290611, 313981, 331537, 332461, 344161
Offset: 1
31 is a term since 31, 37 = 31 + 6, 41 = 31 + 10, 43 = 31 + 12 and 47 = 31 + 16 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[26000]],5,1],Differences[#]=={6,4,2,4}&]][[1]] (* Harvey P. Dale, Aug 26 2014 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
Comments