cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 88 results. Next

A116047 n+phi(n)+phi(phi(n)) is a brilliant number (A078972).

Original entry on oeis.org

2, 3, 6, 7, 8, 11, 73, 91, 93, 105, 109, 119, 127, 151, 157, 185, 195, 209, 223, 225, 229, 249, 289, 303, 325, 355, 371, 385, 395, 397, 401, 417, 473, 495, 545, 559, 589, 641, 665, 673, 681, 699, 709, 779, 795, 815, 821, 901, 905, 1007, 1041, 1061, 1065
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			779+phi(779)+phi(phi(779)) = 1691 = 19*89.
		

Crossrefs

A116052 Numbers k such that k + sigma(k) + sigma(sigma(k)) is a brilliant number (A078972).

Original entry on oeis.org

2, 3, 57, 63, 64, 83, 85, 91, 98, 133, 141, 145, 149, 154, 156, 187, 189, 232, 247, 249, 255, 263, 279, 281, 293, 310, 319, 415, 419, 425, 467, 512, 575, 589, 593, 653, 791, 799, 813, 837, 839, 970, 1019, 1103, 1113, 1145, 1247, 1259, 1427, 2183, 2223
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			1103 is in the sequence since 1103 + sigma(1103) + sigma(sigma(1103)) = 71*73 (a brilliant number).
		

Crossrefs

Cf. A078972 (brilliant numbers), A116051.

A338378 a(1) = 4. a(n) is the smallest semiprime number, which is not an earlier term, for which a(n - 1) + a(n) is a brilliant semiprime number (A078972).

Original entry on oeis.org

4, 6, 9, 26, 95, 74, 69, 118, 25, 10, 15, 34, 87, 82, 39, 214, 33, 358, 49, 94, 93, 206, 155, 14, 21, 122, 65, 254, 35, 86, 57, 262, 115, 106, 141, 46, 123, 166, 55, 382, 91, 346, 183, 38, 209, 194, 129, 58, 85, 466, 51, 158, 161, 398, 119, 134, 185, 62, 159
Offset: 1

Views

Author

Marius A. Burtea, Oct 26 2020

Keywords

Comments

The brilliant semiprime numbers in order of appearance are: 10, 15, 35, 121, 169, 143, 187, 143, 35, 25, 49, 121, 169, 121, 253, 247, 391, 407, 143, 187, 299, 361, 169, 35, 143, 187, 319, 289, 121, 143, ... It is observed that some numbers repeat: 35 = 9 + 26 = 25 + 10 = 14 + 21 or 143 = 74 + 69 = 118 + 25 = 49 + 94 = 21 + 122 = 86 + 57.

Examples

			a(1) + a(2) = 4 + 6 = A001358(1) + A001358(2) = 10 = A078972(4).
a(2) + a(3) = 6 + 9 = A001358(2) + A001358(3) = 15 = A078972(6).
a(3) + a(4) = 9 + 26 = A001358(3) + A001358(10) = 35 = A078972(9).
a(4) + a(5) = 26 + 95 = A001358(10) + A001358(34) = 121 = A078972(11).
		

Crossrefs

Programs

  • Magma
    bs:=func; s:=func; a:=[ 4 ]; for n in [2..60] do  k:=2; while k in a or  not s(k) or not bs(k+a[n-1]) do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    Block[{a = {4}}, Do[Block[{k = 6}, While[Nand[FreeQ[a, k], PrimeOmega[k] == 2, If[PrimeOmega[#] == 2, SameQ @@ Map[IntegerLength, FactorInteger[#][[All, 1]] ], False] &[a[[-1]] + k]], k++]; AppendTo[a, k]], {i, 58}]; a] (* Michael De Vlieger, Nov 06 2020 *)

A138510 Smallest number b such that in base b the prime factors of the n-th semiprime (A001358) have equal lengths.

Original entry on oeis.org

1, 2, 1, 6, 8, 3, 3, 12, 1, 14, 12, 18, 2, 20, 14, 24, 1, 18, 4, 20, 30, 32, 4, 24, 38, 4, 42, 5, 44, 30, 4, 32, 48, 5, 54, 38, 5, 60, 5, 1, 62, 42, 44, 5, 68, 48, 72, 2, 30, 74, 32, 80, 54, 5, 84, 1, 60, 90, 62, 38, 3, 98, 68, 102, 6, 42, 104, 3, 72, 108, 44, 6, 110, 74, 3, 114, 48, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 21 2008

Keywords

Comments

a(n) = 1 iff A001358(n) is the square of a prime (A001248);
Equally, 1 if A001358(n) = p^2, otherwise, if A001358(n) = p*q (p, q primes, p < q), then a(n) = A252375(n) = the least r such that r^k <= p < q < r^(k+1), for some k >= 0. - Antti Karttunen, Dec 16 2014
a(A174956(A085721(n))) <= 2. - Reinhard Zumkeller, Dec 19 2014

Examples

			For n=31, the n-th semiprime is A001358(31) = 91 = 7*13;
     7 =  111_2 =  21_3 = 13_4
and 13 = 1101_2 = 111_3 = 31_4, so a(31) = 4. [corrected by _Jon E. Schoenfield_, Sep 23 2018]
.
Illustration of initial terms, n <= 25:
.   n | A001358(n) =  p * q |  b = a(n) | p and q in base b
. ----+---------------------+-----------+-------------------
.   1 |       4       2   2 |      1    |     [1]        [1]
.   2 |       6       2   3 |      2    |   [1,0]      [1,1]
.   3 |       9       3   3 |      1    | [1,1,1]    [1,1,1]
.   4 |  **  10       2   5 |      6    |     [2]        [5]
.   5 |  **  14       2   7 |      8    |     [2]        [7]
.   6 |      15       3   5 |      3    |   [1,0]      [1,2]
.   7 |      21       3   7 |      3    |   [1,0]      [2,1]
.   8 |  **  22       2  11 |     12    |     [2]       [11]
.   9 |      25       5   5 |      1    |   [1]^5      [1]^5
.  10 |  **  26       2  13 |     14    |     [2]       [13]
.  11 |  **  33       3  11 |     12    |     [3]       [11]
.  12 |  **  34       2  17 |     18    |     [2]       [17]
.  13 |      35       5   7 |      2    | [1,0,1]    [1,1,1]
.  14 |  **  38       2  19 |     20    |     [2]       [19]
.  15 |  **  39       3  13 |     14    |     [3]       [13]
.  16 |  **  46       2  23 |     24    |     [2]       [23]
.  17 |      49       7   7 |      1    |   [1]^7      [1]^7
.  18 |  **  51       3  17 |     18    |     [3]       [17]
.  19 |      55       5  11 |      4    |   [1,1]      [2,3]
.  20 |  **  57       3  19 |     20    |     [3]       [19]
.  21 |  **  58       2  29 |     30    |     [2]       [29]
.  22 |  **  62       2  31 |     32    |     [2]       [31]
.  23 |      65       5  13 |      4    |   [1,1]      [3,1]
.  24 |  **  69       3  23 |     24    |     [3]       [23]
.  25 |  **  74       2  37 |     38    |     [2]       [37]
where p = A084126(n) and q = A084127(n),
semiprimes marked with ** indicate terms of A138511, i.e. b = q + 1.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex, unfoldr); import Data.Tuple (swap)
    import Data.Maybe (mapMaybe)
    a138510 n = genericIndex a138510_list (n - 1)
    a138510_list = mapMaybe f [1..] where
      f x | a010051' q == 0 = Nothing
          | q == p          = Just 1
          | otherwise       = Just $
            head [b | b <- [2..], length (d b p) == length (d b q)]
          where q = div x p; p = a020639 x
      d b = unfoldr (\z -> if z == 0 then Nothing else Just $ swap $ divMod z b)
    -- Reinhard Zumkeller, Dec 16 2014
    
  • Scheme
    (define (A138510 n) (A251725 (A001358 n))) ;; Antti Karttunen, Dec 16 2014

Formula

a(n) = A251725(A001358(n)). - Antti Karttunen, Dec 16 2014

Extensions

Wrong comment corrected by Reinhard Zumkeller, Dec 16 2014

A085721 Semiprimes whose prime factors have an equal number of digits in binary representation.

Original entry on oeis.org

4, 6, 9, 25, 35, 49, 121, 143, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 667, 713, 841, 899, 961, 1369, 1517, 1591, 1681, 1739, 1763, 1849, 1927, 1961, 2021, 2173, 2183, 2209, 2257, 2279, 2419, 2491, 2501, 2537, 2623, 2773, 2809
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

A138510(A174956(a(n))) <= 2. - Reinhard Zumkeller, Dec 19 2014

Examples

			A078972(35) = 527 = 17*31 -> 10001*11111, therefore 527 is a term;
A078972(37) = 533 = 13*41 -> 1101*101001, therefore 533 is not a term;
A001358(1920) = 7169 = 67*107 -> 1000011*1101011: therefore 7169 a term, but not of A078972.
		

Crossrefs

Cf. A261073, A261074, A261075 (subsequences).
Intersection of A001358 and A266346.

Programs

  • Haskell
    a085721 n = a085721_list !! (n-1)
    a085721_list = [p*q | (p,q) <- zip a084126_list a084127_list,
                          a070939 p == a070939 q]
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, Plus @@ Last /@ fi == 2 && IntegerLength[ fi[[1, 1]], 2] == IntegerLength[ fi[[-1, 1]], 2]]; Select[ Range@ 2866, fQ] (* Robert G. Wilson v, Oct 29 2011 *)
    Select[Range@ 3000, And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    is(n)=bigomega(n)==2&&#binary(factor(n)[1,1])==#binary(n/factor(n)[1,1]) \\ Charles R Greathouse IV, Nov 08 2011
    

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A376703 3-brilliant numbers: numbers which are the product of three primes having the same number of decimal digits.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 45, 50, 63, 70, 75, 98, 105, 125, 147, 175, 245, 343, 1331, 1573, 1859, 2057, 2197, 2299, 2431, 2717, 2783, 2873, 3179, 3211, 3289, 3509, 3553, 3751, 3757, 3887, 3971, 4147, 4199, 4301, 4433, 4477, 4693, 4807, 4901, 4913, 4961, 5083
Offset: 1

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			4961 is a term because 4961 = 11 * 11 * 41, and these three prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014612.

Programs

  • Mathematica
    A376703Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 3 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[6000], A376703Q] (* or *)
    dlist3[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 3]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist3, 2]]
  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(5100) if ok(k)]) # Michael S. Branicky, Oct 05 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations_with_replacement as cwr, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in cwr(primes, 3): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Oct 05 2024

A376704 4-brilliant numbers: numbers which are the product of four primes having the same number of decimal digits.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 14641, 17303, 20449, 22627, 24167, 25289, 26741, 28561, 29887, 30613, 31603, 34969, 35321, 36179
Offset: 1

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			35321 is a term because 35321 = 11 * 13 * 13 * 19, and these four prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014613.

Programs

  • Mathematica
    A376704Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 4 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[40000], A376704Q] (* or *)
    dlist4[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 4]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist4, 2]]

A084475 a(n) defines the first brilliant number, b_n, greater than 10^n. If n is odd or zero, then b_n is 10^n+a(n); and if n is a positive even number, then b_n is {10^(n/2)+a(n)}^2.

Original entry on oeis.org

3, 0, 1, 3, 1, 13, 9, 43, 7, 81, 3, 147, 3, 73, 19, 3, 7, 831, 7, 49, 19, 987, 3, 691, 39, 183, 37, 4153, 31, 279, 37, 667, 61, 709, 3, 277, 3, 1687, 51, 997, 39, 1207, 117, 91, 9, 1411, 117, 393, 7, 951, 13, 9793, 67, 2217, 103, 6229, 331, 2317, 319, 213, 57, 399, 33, 19
Offset: 0

Views

Author

Jason Earls, Jun 03 2003

Keywords

Examples

			a(5)=13 because 10^5+13 = 100013 = 103*971 and a(6)=9 because (10^3+9)^2 = 1009^2. For n>0, a(2n) = A033873(n).
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^(n/2), While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[n], {n, 0, 63}]

Extensions

Edited and extended by Robert G. Wilson v, Jun 27 2003

A083128 Least 3-brilliant number of size n.

Original entry on oeis.org

8, 12, 105, 1331, 10013, 100181, 1030301, 10000127, 100000727, 1027243729, 10000002797, 100000000757, 1002101470343, 10000000000493, 100000000005643, 1000090002700027, 10000000000001251, 100000000000000649
Offset: 1

Views

Author

Robert G. Wilson v, May 11 2003

Keywords

Comments

Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs.
a(3n+1) will always be the cube of the least prime greater than 10^n.
2-brilliant numbers are A078972. 3-brilliant numbers addressed in A083128 and A083182. The sum of all 1, 2 and 3-digit 2-brilliant numbers is a 3-brilliant number. 37789 = 23 * 31 * 53 = 4 + 6 + 9 + 10 + 14 + 15 + 21 + 25 + 35 + 49 + 121 + 143 + 169 + 187 + 209 + 221 + 247 + 253 + 289 + 299 + 319 + 323 + 341 + 361 + 377 + 391 + 403 + 407 + 437 + 451 + 473 + 481 + 493 + 517 + 527 + 529 + 533 + 551 + 559 + 583 + 589 + 611 + 629 + 649 + 667 + 671 + 689 + 697 + 703 + 713 + 731 + 737 + 767 + 779 + 781 + 793 + 799 + 803 + 817 + 841 + 851 + 869 + 871 + 893 + 899 + 901 + 913 + 923 + 943 + 949 + 961 + 979 + 989 - Jonathan Vos Post, Jun 17 2007

Examples

			a(5) = 10013 = 17 * 19 * 31 and there is no lesser number of five digits which has three prime factors, not necessarily different, of the same size in decimal notation.
		

Crossrefs

A114125 a(n) is the 10^n-th semiprime.

Original entry on oeis.org

4, 26, 314, 3595, 40882, 459577, 5109839, 56168169, 611720495, 6609454805, 70937808071, 757060825018, 8040423200947, 85037651263063, 896113850117314, 9413000361625346, 98597629032410971, 1030179406403917981, 10739422018595513973, 111729397883168684917, 1160260967837159869621
Offset: 0

Views

Author

Robert G. Wilson v, Feb 11 2006

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; c = 0; k = 2; Do[While[c < 10^n, If[fQ@k, c++ ]; k++ ]; Print[k - 1], {n, 0, 8}]
    (* checked by *) SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]
  • Perl
    use ntheory ":all"; print "$ ",nth_semiprime(10**$),"\n" for 0..15; # Dana Jacobsen, Oct 08 2018

Extensions

a(14) from Donovan Johnson, Sep 27 2010
Corrected a(14), added a(15)-a(18) from Dana Jacobsen, Oct 10 2018
a(19)-a(20) from Henri Lifchitz, Nov 08 2024
Previous Showing 41-50 of 88 results. Next