cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A226761 G.f.: 1 / (1 + 12*x*G(x)^2 - 13*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 16, 118, 1004, 8601, 75076, 662796, 5903676, 52949332, 477533356, 4326309406, 39343725716, 358943047438, 3283745710968, 30112624408488, 276715616909148, 2547523969430508, 23491659440021920, 216942761366305144, 2006084011596742384, 18572529488934397689
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+3*k,n-k]*Binomial[2*n-3*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k).
a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k).
a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k).
a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k).
a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k).
G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-3+4*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 7*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A378484 Expansion of (Sum_{k>=0} binomial(4*k,k) * x^k)^4.

Original entry on oeis.org

1, 16, 208, 2480, 28176, 310336, 3344688, 35472672, 371570320, 3853862080, 39650662720, 405221752112, 4117879215472, 41643345090240, 419362920305952, 4207604570770752, 42079232716865424, 419609034657373120, 4173470598366784960, 41413032430984848832, 410071444666659404352
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[4*k,k] * x^k, {k, 0, nmax}]^4, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 19 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(4*k, k)*x^k)^4)

Formula

a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 0} binomial(4*i,i) * binomial(4*j,j) * binomial(4*k,k) * binomial(4*l,l).
G.f.: B(x)^4 where B(x) is the g.f. of A005810.
27*a(n) - 256*a(n-1) = 18*A078995(n) + 8*A005810(n) for n > 0.
a(n) ~ n * 2^(8*n + 2) / 3^(3*n + 2) * (1 + 2^(7/2)/(3^(3/2)*sqrt(Pi*n))). - Vaclav Kotesovec, Jul 19 2025

A078516 Sum of balls on the lawn for the s=4 tennis ball problem.

Original entry on oeis.org

0, 10, 174, 2298, 27258, 305574, 3309444, 35022618, 364559760, 3748221288, 38170570414, 385768464918, 3874673308452, 38718126671076, 385227806897448, 3818752082440794, 37735160423265504, 371852044352248824, 3655440051907792536, 35857177310350860328
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Formula

a(n) is asymptotic to c*sqrt(n)*(256/27)^n with c=2.8... - Benoit Cloitre, Jan 26 2003
a(n) = ( (4*n^2+11*n+8) * A002293(n+1) - A078995(n+1) ) / 2. - Sean A. Irvine, Jul 02 2025

A078999 Coefficients A_n for the s=4 tennis ball problem.

Original entry on oeis.org

1, 14, 156, 1622, 16347, 161970, 1588176, 15465222, 149866020, 1447117432, 13935821924, 133921143546, 1284811863298, 12309517103724, 117803253946752, 1126336913303526, 10760609522499660, 102733711144434216, 980250448431562864, 9348504508099893272
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    FussArea := proc(s,n)
        local a,i,j ;
        a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
        add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
        a := a+binomial(s+1,2)*% ;
        for j from 0 to n-1 do
            for i from 0 to j do
                i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
                *binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
                *binomial((s+1)*(n-j)-2,n-1-j) ;
                a := a-%*binomial(s+1,2) ;
            end do:
        end do:
        a ;
    end proc:
    seq(FussArea(3,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
  • Mathematica
    FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
    Table[FussArea[3, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)

Formula

Conjecture D-finite with recurrence -729*(3*n+2)*(447758283*n-407746117) *(3*n+4) *(n+1)*a(n) +216*(182049960672*n^4 +605681769096*n^3 -358290749358*n^2 -265170598015*n -38328134998)*a(n-1) +1536 *(30350980224*n^4 -947048676672*n^3 +1377152586736*n^2 -569141632910*n +54868443093)*a(n-2) -131072*(4*n-5) *(351198196*n -151260957) *(4*n-7) *(2*n-3)*a(n-3)=0. - R. J. Mathar, Mar 31 2023
a(n) = ( A078995(n+1) - (5*n+6) * A002293(n+1) ) / 2. - Sean A. Irvine, Jul 02 2025

A268315 Decimal expansion of 256/27.

Original entry on oeis.org

9, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8
Offset: 1

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Examples

			9.481481481481481481481481481481...
		

Crossrefs

Programs

  • Magma
    [9] cat &cat[[4, 8, 1]^^45]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Join[{9}, PadRight[{}, 120, {4, 8, 1}]] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    1.0 * 256/27
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A358050 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j) * binomial(k*(n-j),n-j).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 16, 4, 0, 1, 8, 39, 64, 5, 0, 1, 10, 72, 258, 256, 6, 0, 1, 12, 115, 664, 1719, 1024, 7, 0, 1, 14, 168, 1360, 6184, 11496, 4096, 8, 0, 1, 16, 231, 2424, 16265, 57888, 77052, 16384, 9, 0, 1, 18, 304, 3934, 35400, 195660, 543544, 517194, 65536, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,     1,      1, ...
  0, 2,    4,     6,     8,     10, ...
  0, 3,   16,    39,    72,    115, ...
  0, 4,   64,   258,   664,   1360, ...
  0, 5,  256,  1719,  6184,  16265, ...
  0, 6, 1024, 11496, 57888, 195660, ...
		

Crossrefs

Column k=0-7 give: A000007, A001477(n+1), A000302, A006256, A078995, A079678, A079679, A079563.
Main diagonal gives A358145.
Cf. A358146.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*j, j)*binomial(k*(n-j), n-j));
    
  • PARI
    T(n, k) = sum(j=0, n, (k-1)^(n-j)*binomial(k*n+1, j));
    
  • PARI
    T(n, k) = sum(j=0, n, k^(n-j)*binomial((k-1)*n+j, j));

Formula

T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(k*n+1,j).
T(n,k) = Sum_{j=0..n} k^(n-j) * binomial((k-1)*n+j,j).

A378503 Expansion of (Sum_{k>=0} binomial(4*k,k) * x^k)^3.

Original entry on oeis.org

1, 12, 132, 1396, 14436, 147120, 1483996, 14854968, 147821604, 1464031120, 14443875984, 142042418004, 1393053544508, 13630170286224, 133092301736232, 1297274743175856, 12624909478998948, 122692158505386960, 1190859983017752880, 11545524234978791952, 111820579340839270416
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(4*k, k)*x^k)^3)

Formula

a(n) = Sum_{i+j+k=n, i,j,k >= 0} binomial(4*i,i) * binomial(4*j,j) * binomial(4*k,k).
G.f.: B(x)^3 where B(x) is the g.f. of A005810.
27*a(n) - 256*a(n-1) = 18*A005810(n) - A337291(n) for n > 0.

A385251 a(n) = Sum_{k=0..n-1} binomial(4*k-3,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 9, 84, 790, 7452, 70401, 665692, 6298236, 59612556, 564393460, 5344664400, 50621130078, 479513718116, 4542730477758, 43039907282664, 407809863233592, 3864303038901996, 36619104142640460, 347027703183853552, 3288802989845088504, 31169274939274755312
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-3, k)*binomial(4*n-4*k, n-k-1));

Formula

G.f.: (g-1)/(g * (4-3*g)^2) where g=1+x*g^4.
G.f.: g * (1-g)^2/(1-4*g)^2 where g*(1-g)^3 = x.
a(n) = Sum_{k=0..n-1} binomial(4*k-3+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n-2,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k-2,k).
Previous Showing 11-18 of 18 results.