Original entry on oeis.org
0, 1, 81, 6724, 558009, 46308025, 3843008064, 318923361289, 26466795978921, 2196425142889156, 182276820063821025, 15126779640154255921, 1255340433312739420416, 104178129185317217638609, 8645529381948016324584129, 717474760572500037722844100, 59541759598135555114671476169
Offset: 0
- Stefano Spezia, Table of n, a(n) for n = 0..500
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (82,82,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{82,82,-1},{0,1,81},17] (* Stefano Spezia, Apr 06 2023 *)
Original entry on oeis.org
0, 1, 16, 289, 5184, 93025, 1669264, 29953729, 537497856, 9645007681, 173072640400, 3105662519521, 55728852710976, 1000013686278049, 17944517500293904, 322001301319012225, 5778078906241926144, 103683419011035658369, 1860523463292399924496, 33385738920252162982561
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..750
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (17,17,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Fibonacci(3*n)^2/4: n in [0..30]]; // G. C. Greubel, Aug 18 2022
-
with (combinat):seq(fibonacci(n,4)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n),n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010
-
LinearRecurrence[{17,17,-1},{0,1,16},30] (* Harvey P. Dale, Mar 26 2012 *)
Fibonacci[3*Range[0, 30]]^2/4 (* G. C. Greubel, Aug 18 2022 *)
-
numlib::fibonacci(3*n)^2/4 $ n = 0..35; // Zerinvary Lajos, May 13 2008
-
my(x='x+O('x^99)); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017
-
[(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A099365
Squares of A052918(n-1) (generalized Fibonacci).
Original entry on oeis.org
0, 1, 25, 676, 18225, 491401, 13249600, 357247801, 9632441025, 259718659876, 7002771375625, 188815108482001, 5091005157638400, 137268324147754801, 3701153746831741225, 99793882840309258276, 2690733682941518232225
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..650
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (26,26,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[(2/29)*(Evaluate(ChebyshevFirst(n), 27/2) -(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 21 2022
-
with (combinat):seq(fibonacci(n,5)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
-
LinearRecurrence[{26,26,-1},{0,1,25},30] (* Harvey P. Dale, Sep 25 2019 *)
-
def A099365(n): return (2/29)*(chebyshev_T(n, 27/2) - (-1)^n)
[A099365(n) for n in (0..30)] # G. C. Greubel, Aug 21 2022
A099369
Squares of A041025(n-1), n>=1, (generalized Fibonacci).
Original entry on oeis.org
0, 1, 64, 4225, 278784, 18395521, 1213825600, 80094094081, 5284996383744, 348729667233025, 23010873040995904, 1518368891038496641, 100189335935499782400, 6610977802851947141761, 436224345652293011573824
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (65,65,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{65,65,-1},{0,1,64},20] (* Harvey P. Dale, Oct 05 2021 *)
Original entry on oeis.org
0, 1, 100, 10201, 1040400, 106110601, 10822240900, 1103762461201, 112572948801600, 11481337015302001, 1170983802612002500, 119428866529408953001, 12180573402197101203600
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (101,101,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{101,101,-1},{0,1,100},20] (* Harvey P. Dale, Nov 10 2021 *)
Original entry on oeis.org
0, 1, 49, 2500, 127449, 6497401, 331240000, 16886742601, 860892632649, 43888637522500, 2237459621014849, 114066552034234801, 5815156694124960000, 296458924848338725201, 15113590010571150025249, 770496631614280312562500
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (50,50,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
LinearRecurrence[{50,50,-1},{0,1,49},20] (* Harvey P. Dale, Jul 27 2023 *)
Original entry on oeis.org
0, 1, 36, 1369, 51984, 1974025, 74960964, 2846542609, 108093658176, 4104712468081, 155870980128900, 5918992532430121, 224765845252215696, 8535183127051766329, 324112192982714904804, 12307728150216114616225
Offset: 0
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
- Index entries for linear recurrences with constant coefficients, signature (37,37,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
with (combinat):seq(fibonacci(n,6)^2,n=0..15); # Zerinvary Lajos, Apr 09 2008
-
LinearRecurrence[{37,37,-1},{0,1,36},20] (* Harvey P. Dale, Sep 23 2018 *)
A110048
Expansion of 1/((1+2*x)*(1-4*x-4*x^2)).
Original entry on oeis.org
1, 2, 16, 64, 336, 1568, 7680, 36864, 178432, 860672, 4157440, 20070400, 96915456, 467935232, 2259419136, 10909384704, 52675280896, 254338531328, 1228055511040, 5929575645184, 28630525673472, 138240403177472
Offset: 0
-
[2^(n-2)*(Evaluate(DicksonFirst(n+1,-1), 2) +2*(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 18 2022
-
seriestolist(series(1/((1+2*x)*(1-4*x-4*x^2)), x=0,40));
-
CoefficientList[Series[1/((1+2x)(1-4x-4x^2)), {x,0,40}], x] (* or *) LinearRecurrence[{2,12,8}, {1,2,16}, 41] (* Harvey P. Dale, Nov 02 2011 *)
-
[2^(n-2)*(lucas_number2(n+1,2,-1) +2*(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 18 2022
A110272
a(n) = Pell(n)^3.
Original entry on oeis.org
0, 1, 8, 125, 1728, 24389, 343000, 4826809, 67917312, 955671625, 13447314152, 189218084021, 2662500456000, 37464224551181, 527161643971768, 7417727240640625, 104375343011770368, 1468672529408250769
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..850
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Toufik Mansour, A formula for the generating functions of powers of Horadam's sequence, Australas. J. Combin. 30 (2004) 207-212.
- Index entries for linear recurrences with constant coefficients, signature (12,30,-12,-1).
-
I:=[0,1,8,125]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) -12*Self(n-3) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 17 2021
-
Fibonacci[Range[0, 30], 2]^3 (* G. C. Greubel, Sep 17 2021 *)
-
[lucas_number1(n, 2, -1)^3 for n in (0..30)] # G. C. Greubel, Sep 17 2021
A255494
Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0
Triangle begins:
1;
1, 1; # see A079291
1, 4, 1; # see A110272
1, 13, 13, 1;
1, 38, 130, 38, 1;
1, 105, 1106, 1106, 105, 1;
1, 280, 8575, 26544, 8575, 280, 1;
1, 729, 62475, 567203, 567203, 62475, 729, 1;
1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
-
P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]];
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
-
@CachedFunction
def P(n): return lucas_number1(n, 2, -1)
def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021
Comments