cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A099372 a(n) = A099371(n)^2.

Original entry on oeis.org

0, 1, 81, 6724, 558009, 46308025, 3843008064, 318923361289, 26466795978921, 2196425142889156, 182276820063821025, 15126779640154255921, 1255340433312739420416, 104178129185317217638609, 8645529381948016324584129, 717474760572500037722844100, 59541759598135555114671476169
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=9.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 9 kinds of half-square available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 9 kinds of (1/4,1/4)-fence available. - Michael A. Allen, Mar 21 2024

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, A099366, A099367, A099369, this sequence, A099374.

Programs

  • Mathematica
    LinearRecurrence[{82,82,-1},{0,1,81},17] (* Stefano Spezia, Apr 06 2023 *)

Formula

a(n) = A099371(n)^2.
a(n) = 82*a(n-1) + 82*a(n-2) - a(n-3), n>=3; a(0)=0, a(1)=1, a(2)=81.
a(n) = 83*a(n-1) - a(n-2) - 2*(-1)^n, n>=2; a(0)=0, a(1)=1.
a(n) = 2*(T(n, 83/2)-(-1)^n)/85 with twice the Chebyshev polynomials of the first kind: 2*T(n, 83/2) = A099373(n).
G.f.: x*(1-x)/((1-83*x+x^2)*(1+x)) = x*(1-x)/(1-82*x-82*x^2+x^3).
E.g.f.: 2*exp(-x)*(exp(85*x/2)*cosh(9*sqrt(85)*x/2) - 1)/85. - Stefano Spezia, Apr 06 2023
a(n) = (1 - (-1)^n)/2 + 81*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Mar 21 2024
Product_{n>=2} (1 + (-1)^n/a(n)) = (9 + sqrt(85))/18 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099279 Squares of A001076.

Original entry on oeis.org

0, 1, 16, 289, 5184, 93025, 1669264, 29953729, 537497856, 9645007681, 173072640400, 3105662519521, 55728852710976, 1000013686278049, 17944517500293904, 322001301319012225, 5778078906241926144, 103683419011035658369, 1860523463292399924496, 33385738920252162982561
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

For the generalized Fibonacci sequences U(n-1;a) = (ap(a)^n - am(a)^n)/(ap(a) - am(a)) with ap(a) = (a + sqrt(a^2+4))/2, am(a) = (a - sqrt(a^2+4))/2, a from the integers, one has for the squared sequences U(n-1;a)^2 = (2*T(n,(a^2+2)/2) - 2*(-1)^n)/(a^2+4). Here T(n,x) are Chebyshev's polynomials of the first kind (see A053120). Therefore the o.g.f. for the squared sequence is x*(1-x)/((1+x)*(1-(a^2+2)*x+x^2)) = x*(1-x)/(1 - (a^2+1)*x - (a^2+1)*x^2 + x^3). For this example a=4.
Unsigned member r=-16 of the family of Chebyshev sequences S_r(n) defined in A092184.
(-1)^(n+1)*a(n) = S_{-16}(n), n >= 0, defined in A092184.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 4 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 4 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 12 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, this sequence, A099365, A099366, A099367, A099369, A099372, A099374.

Programs

  • Magma
    [Fibonacci(3*n)^2/4: n in [0..30]]; // G. C. Greubel, Aug 18 2022
  • Maple
    with (combinat):seq(fibonacci(n,4)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
    nmax:=48: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax/3 do a(n):=a(n-1)+A001654(3*n-2) od: seq(a(n),n=0..nmax/3); # Johannes W. Meijer, Sep 22 2010
  • Mathematica
    LinearRecurrence[{17,17,-1},{0,1,16},30] (* Harvey P. Dale, Mar 26 2012 *)
    Fibonacci[3*Range[0, 30]]^2/4 (* G. C. Greubel, Aug 18 2022 *)
  • MuPAD
    numlib::fibonacci(3*n)^2/4 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    my(x='x+O('x^99)); concat([0], Vec(x*(1-x)/((1-18*x+x^2)*(1+x)))) \\ Altug Alkan, Dec 17 2017
    
  • Sage
    [(fibonacci(3*n))^2/4 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = A001076(n)^2.
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=16.
a(n) = 18*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2, a(0)=0, a(1)=1.
a(n) = (T(n, 9) - (-1)^n)/10 with Chebyshev's T(n, x) polynomials of the first kind. T(n, 9) = A023039(n).
G.f.: x*(1-x)/((1+x)*(1-18*x+x^2)) = x*(1-x)/(1-17*x-17*x^2+x^3).
a(n) = a(n-1) + A001654(3*n-2) with a(0)=0, where A001654 are the golden rectangle numbers. - Johannes W. Meijer, Sep 22 2010
a(n+1) = (1 + (-1)^n)/2 + 16*Sum_{r=1..n} ( r*a(n+1-r) ). - Michael A. Allen, Mar 12 2023
E.g.f.: exp(-x)*(exp(10*x)*cosh(4*sqrt(5)*x) - 1)/10. - Stefano Spezia, Apr 06 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (2 + sqrt(5))/4 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099365 Squares of A052918(n-1) (generalized Fibonacci).

Original entry on oeis.org

0, 1, 25, 676, 18225, 491401, 13249600, 357247801, 9632441025, 259718659876, 7002771375625, 188815108482001, 5091005157638400, 137268324147754801, 3701153746831741225, 99793882840309258276, 2690733682941518232225
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=5.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 5 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 5 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 30 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, this sequence, A099366, A099367, A099369, A099372, A099374.

Programs

  • Magma
    [(2/29)*(Evaluate(ChebyshevFirst(n), 27/2) -(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Maple
    with (combinat):seq(fibonacci(n,5)^2,n=0..16); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    LinearRecurrence[{26,26,-1},{0,1,25},30] (* Harvey P. Dale, Sep 25 2019 *)
  • SageMath
    def A099365(n): return (2/29)*(chebyshev_T(n, 27/2) - (-1)^n)
    [A099365(n) for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = A052918(n-1)^2, n >= 1, a(0) = 0.
a(n) = 26*a(n-1) + 26*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=25.
a(n) = 27*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = 2*(T(n, 27/2) - (-1)^n)/29 with twice the Chebyshev's T(n, x) polynomials of the first kind. 2*T(n, 27/2) = A090248(n).
G.f.: x*(1-x)/((1-27*x+x^2)*(1+x)) = x*(1-x)/(1-26*x-26*x^2+x^3).
a(n) = (1 - (-1)^n)/2 + 25*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Mar 30 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (5 + sqrt(29))/10 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099369 Squares of A041025(n-1), n>=1, (generalized Fibonacci).

Original entry on oeis.org

0, 1, 64, 4225, 278784, 18395521, 1213825600, 80094094081, 5284996383744, 348729667233025, 23010873040995904, 1518368891038496641, 100189335935499782400, 6610977802851947141761, 436224345652293011573824
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=8.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 8 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 8 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Apr 30 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, A099366, A099367, this sequence, A099372, A099374.

Programs

  • Mathematica
    LinearRecurrence[{65,65,-1},{0,1,64},20] (* Harvey P. Dale, Oct 05 2021 *)

Formula

a(n) = A041025(n-1)^2, n >= 1, a(0)=0.
a(n) = 65*a(n-1) + 65*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=64.
a(n) = 66*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = (T(n, 33) - (-1)^n)/34 with the Chebyshev polynomials of the first kind: T(n, 33) = A099370(n).
G.f.: x*(1-x)/((1-66*x+x^2)*(1+x)) = x*(1-x)/(1-65*x-65*x^2+x^3).
a(n) = (1 - (-1)^n)/2 + 64*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Apr 30 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (4 + sqrt(17))/8 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099374 a(n) = A041041(n-1)^2, n >= 1.

Original entry on oeis.org

0, 1, 100, 10201, 1040400, 106110601, 10822240900, 1103762461201, 112572948801600, 11481337015302001, 1170983802612002500, 119428866529408953001, 12180573402197101203600
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=10.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 10 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 10 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 21 2024

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, A099366, A099367, A099369, A099372, this sequence.

Programs

  • Mathematica
    LinearRecurrence[{101,101,-1},{0,1,100},20] (* Harvey P. Dale, Nov 10 2021 *)

Formula

a(n) = A041041(n-1)^2, n >= 1, a(0)=0.
a(n) = 101*a(n-1) + 101*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=100.
a(n) = 102*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = (T(n, 51) - (-1)^n)/52 with the Chebyshev polynomials of the first kind: T(n, 51) = (n).
G.f.: x*(1-x)/((1-102*x+x^2)*(1+x)) = x*(1-x)/(1-101*x-101*x^2+x^3).
a(n) = (1 - (-1)^n)/2 + 100*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Mar 21 2024
Product_{n>=2} (1 + (-1)^n/a(n)) = (5 + sqrt(26))/10 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099367 a(n) = A054413(n-1)^2, n >= 1.

Original entry on oeis.org

0, 1, 49, 2500, 127449, 6497401, 331240000, 16886742601, 860892632649, 43888637522500, 2237459621014849, 114066552034234801, 5815156694124960000, 296458924848338725201, 15113590010571150025249, 770496631614280312562500
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=7.

Crossrefs

Cf. A054413.
Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, A099366, this sequence, A099369, A099372, A099374.

Programs

  • Mathematica
    LinearRecurrence[{50,50,-1},{0,1,49},20] (* Harvey P. Dale, Jul 27 2023 *)

Formula

a(n) = A054413(n-1)^2, n >= 1. a(0)=0.
a(n) = 50*a(n-1) + 50*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=49.
a(n) = 51*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = 2*(T(n, 51/2) - (-1)^n)/53 with twice the Chebyshev polynomials of the first kind: 2*T(n, 51/2) = A099368(n).
G.f.: x*(1-x)/((1-51*x+x^2)*(1+x)) = x*(1-x)/(1-50*x-50*x^2+x^3).
a(n+1) = (1 + (-1)^n)/2 + 49*Sum_{k=1..n} k*a(n+1-k). - Michael A. Allen, Feb 21 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (7 + sqrt(53))/14 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A099366 Squares of A005668.

Original entry on oeis.org

0, 1, 36, 1369, 51984, 1974025, 74960964, 2846542609, 108093658176, 4104712468081, 155870980128900, 5918992532430121, 224765845252215696, 8535183127051766329, 324112192982714904804, 12307728150216114616225
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=6.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 6 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 6 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Apr 21 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, this sequence, A099367, A099369, A099372, A099374.

Programs

  • Maple
    with (combinat):seq(fibonacci(n,6)^2,n=0..15); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    LinearRecurrence[{37,37,-1},{0,1,36},20] (* Harvey P. Dale, Sep 23 2018 *)

Formula

a(n) = A005668(n)^2.
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=36.
a(n) = 38*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = (T(n, 19) - (-1)^n)/20 with the Chebyshev polynomials of the first kind: T(n, 19) = A078986(n).
G.f.: x*(1-x)/((1 - 38*x + x^2)*(1+x)) = x*(1-x)/(1 - 37*x - 37*x^2 + x^3).
a(n) = (1 - (-1)^n)/2 + 36*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Apr 21 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (3 + sqrt(10))/6 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A110048 Expansion of 1/((1+2*x)*(1-4*x-4*x^2)).

Original entry on oeis.org

1, 2, 16, 64, 336, 1568, 7680, 36864, 178432, 860672, 4157440, 20070400, 96915456, 467935232, 2259419136, 10909384704, 52675280896, 254338531328, 1228055511040, 5929575645184, 28630525673472, 138240403177472
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code:
-kbasejseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
See also comment for A110047.

Crossrefs

Programs

  • Magma
    [2^(n-2)*(Evaluate(DicksonFirst(n+1,-1), 2) +2*(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    seriestolist(series(1/((1+2*x)*(1-4*x-4*x^2)), x=0,40));
  • Mathematica
    CoefficientList[Series[1/((1+2x)(1-4x-4x^2)), {x,0,40}], x] (* or *) LinearRecurrence[{2,12,8}, {1,2,16}, 41] (* Harvey P. Dale, Nov 02 2011 *)
  • SageMath
    [2^(n-2)*(lucas_number2(n+1,2,-1) +2*(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

Superseeker finds: a(n+1) = 2*A086348(n+1) (A086348's offset is 1: On a 3 X 3 board, number of n-move routes of chess king ending at central cell); binomial transform matches A084159 (Pell oblongs); j-th coefficient of g.f.*(1+x)^j matches A079291 (Squares of Pell numbers); a(n) + a(n+1) = A086346(n+2) (A086346's offset is 1: On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner cell.)
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3), where a(1)=1, a(2)=2, a(3)=16.
a(n) = 2^(n-3)*( 4*(-1)^(1-n) + (sqrt(2)-1)^(-n) + (-sqrt(2)-1)^(-n)) . (End)
a(n) = 2^n*A097076(n+1). - R. J. Mathar, Mar 08 2021

A110272 a(n) = Pell(n)^3.

Original entry on oeis.org

0, 1, 8, 125, 1728, 24389, 343000, 4826809, 67917312, 955671625, 13447314152, 189218084021, 2662500456000, 37464224551181, 527161643971768, 7417727240640625, 104375343011770368, 1468672529408250769
Offset: 0

Views

Author

Paul Barry, Jul 18 2005

Keywords

Comments

a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/3,2/3)-fences, black third-squares (1/3 X 1 pieces, always placed so that the shorter sides are horizontal), and white third-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/6,5/6)-fences, black (1/6,1/3)-fences, and white (1/6,1/3)-fences. - Michael A. Allen, Dec 29 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,8,125]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) -12*Self(n-3) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 17 2021
    
  • Mathematica
    Fibonacci[Range[0, 30], 2]^3 (* G. C. Greubel, Sep 17 2021 *)
  • Sage
    [lucas_number1(n, 2, -1)^3 for n in (0..30)] # G. C. Greubel, Sep 17 2021

Formula

G.f.: x*(1-4*x-x^2) / ((1+2*x-x^2)*(1-14*x-x^2)).
a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4).
a(n) = (Pell(3*n) - 3*(-1)^n*Pell(n))/8.

A255494 Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Comments

Note that Table 8 by Falcon should be labeled with the powers n (not r) and that the labels are off by 1. - R. J. Mathar, Jun 14 2015

Examples

			Triangle begins:
  1;
  1,    1; # see A079291
  1,    4,      1; # see A110272
  1,   13,     13,        1;
  1,   38,    130,       38,        1;
  1,  105,   1106,     1106,      105,        1;
  1,  280,   8575,    26544,     8575,      280,      1;
  1,  729,  62475,   567203,   567203,    62475,    729,    1;
  1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
		

Crossrefs

Programs

  • Magma
    P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]];
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
  • Sage
    @CachedFunction
    def P(n): return lucas_number1(n, 2, -1)
    def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021

Formula

From G. C. Greubel, Sep 19 2021: (Start)
T(n, k) = P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k), where T(n, 0) = T(n, n) = 1 and P(n) = A000129(n).
T(n, k) = T(n, n-k).
T(n, 1) = A094706(n).
T(n, 2) = A255495(n-2).
T(n, 3) = A255496(n-3).
T(n, 4) = A255497(n-4).
T(n, 5) = A255498(n-5). (End)
Previous Showing 11-20 of 26 results. Next