A120279
a(n) = Sum[Sum[(i+j)!/i!/j!,{i,1,j}],{j,1,n}].
Original entry on oeis.org
2, 11, 45, 170, 631, 2346, 8780, 33089, 125466, 478181, 1830258, 7030557, 27088856, 104647615, 405187809, 1571990918, 6109558567, 23782190466, 92705454875, 361834392094, 1413883873953, 5530599237752, 21654401079301, 84859704298176
Offset: 1
-
Table[Sum[Sum[(i+j)!/i!/j!,{i,1,j}],{j,1,n}],{n,1,50}]
A138341
Expansion of (1-4x-x^3)/(1-x+x^2)^2.
Original entry on oeis.org
1, -2, -7, -7, 2, 13, 13, -2, -19, -19, 2, 25, 25, -2, -31, -31, 2, 37, 37, -2, -43, -43, 2, 49, 49, -2, -55, -55, 2, 61, 61, -2, -67, -67, 2, 73, 73, -2, -79, -79, 2, 85, 85, -2, -91, -91, 2, 97, 97, -2, -103, -103, 2, 109, 109, -2, -115, -115, 2, 121, 121, -2
Offset: 0
-
CoefficientList[Series[(1-4x-x^3)/(1-x+x^2)^2,{x,0,100}],x] (* or *) LinearRecurrence[{2,-3,2,-1},{1,-2,-7,-7},100] (* Harvey P. Dale, Sep 23 2021 *)
-
Vec((1-4*x-x^3)/(1-x+x^2)^2 + O(x^62)) \\ Jinyuan Wang, Apr 09 2020
A143952
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k peak plateaux (0<=k<=floor(n/2)). A peak plateau is a run of consecutive peaks that is preceded by an upstep and followed by a down step; a peak consists of an upstep followed by a downstep.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 12, 1, 1, 33, 8, 1, 88, 42, 1, 1, 232, 183, 13, 1, 609, 717, 102, 1, 1, 1596, 2622, 624, 19, 1, 4180, 9134, 3275, 205, 1, 1, 10945, 30691, 15473, 1650, 26, 1, 28656, 100284, 67684, 11020, 366, 1, 1, 75024, 320466, 279106, 64553, 3716, 34, 1
Offset: 0
T(3,1)=4 because we have UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D (the peak plateaux are shown between parentheses).
The triangle starts:
1;
1;
1,1;
1,4;
1,12,1;
1,33,8;
1,88,42,1;
-
C:=proc(z) options operator, arrow: (1/2-(1/2)*sqrt(1-4*z))/z end proc: G:=(1-z)*C(z*(1-z)^2/(1-z+z^2-t*z^2)^2)/(1-z+z^2-t*z^2): Gser:=simplify(series(G,z= 0,17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
A143954
Number of peaks in the peak plateaux of all Dyck paths of semilength n.
Original entry on oeis.org
0, 0, 1, 5, 19, 68, 243, 880, 3233, 12021, 45119, 170595, 648787, 2479057, 9509627, 36598497, 141246127, 546433952, 2118424887, 8227983472, 32010173957, 124715628852, 486550020967, 1900433894942, 7431033132717, 29085434212042
Offset: 0
a(3)=5 because in the peak plateaux of the Dyck paths UDUDUD, UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D, shown between parentheses, we have 0 + 1 + 1 + 2 + 1 = 5 peaks.
-
C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^2*C/((1-z)^2*sqrt(1-4*z)): Gser:=series(G,z= 0,30): seq(coeff(Gser,z,n),n=0..25);
-
CoefficientList[Series[x^2*((1-Sqrt[1-4*x])*1/2)/x/((1-x)^2*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
x='x+O('x^50); concat([0,0], Vec(x*(1-sqrt(1-4*x))/(2*(1-x)^2*sqrt(1-4*x)))) \\ G. C. Greubel, Mar 22 2017
A361653
Number of even-length integer partitions of n with integer median.
Original entry on oeis.org
0, 0, 1, 0, 3, 1, 5, 3, 11, 7, 17, 16, 32, 31, 52, 55, 90, 99, 144, 167, 236, 273, 371, 442, 587, 696, 901, 1078, 1379, 1651, 2074, 2489, 3102, 3707, 4571, 5467, 6692, 7982, 9696, 11543, 13949, 16563, 19891, 23572, 28185, 33299, 39640, 46737, 55418, 65164
Offset: 0
The a(2) = 1 through a(9) = 7 partitions:
(11) . (22) (2111) (33) (2221) (44) (3222)
(31) (42) (4111) (53) (4221)
(1111) (51) (211111) (62) (4311)
(3111) (71) (6111)
(111111) (2222) (321111)
(3221) (411111)
(3311) (21111111)
(5111)
(221111)
(311111)
(11111111)
For example, the partition (4,3,1,1) has length 4 and median 2, so is counted under a(9).
Cf.
A008284,
A013580,
A079309,
A240219,
A240850,
A349156,
A359897,
A359908,
A359912,
A360005,
A360952.
-
Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&IntegerQ[Median[#]]&]],{n,0,30}]
A363223
Numbers with bigomega equal to median prime index.
Original entry on oeis.org
2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
50: {1,3,3}
70: {1,3,4}
75: {2,3,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
130: {1,3,6}
165: {2,3,5}
170: {1,3,7}
175: {3,3,4}
Partitions of this type are counted by
A361800.
A000975 counts subsets with integer median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],PrimeOmega[#]==Median[prix[#]]&]
A120278
a(n) = Sum_{m=1..n} Sum_{k=1..m} C(2*k,k), where C(2*k,k) = (2*k)!/(k!)^2 = A000984(k).
Original entry on oeis.org
2, 10, 38, 136, 486, 1760, 6466, 24042, 90238, 341190, 1297574, 4958114, 19019254, 73196994, 282492254, 1092867904, 4236849774, 16455966944, 64020347914, 249431257704, 973100041934, 3800867789884, 14862066265434, 58170868424084
Offset: 1
-
Table[Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}],{n,1,50}]
CoefficientList[Series[(1/Sqrt[1-4 x]-1)/((x-1)^2 x),{x,0,50}],x] (* Harvey P. Dale, May 24 2011 *)
A361863
Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.
Original entry on oeis.org
1, 2, 3, 9, 26, 69, 335, 1018, 6629, 22805, 182988, 703745
Offset: 1
The a(1) = 1 through a(4) = 9 set partitions:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{13}{2}} {{12}{34}}
{{1}{2}{3}} {{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{23}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with median 5/2, so is counted under a(4).
The set partition {{1,3},{2,4}} has medians {2,3}, with median 5/2, so is counted under a(4).
For mean instead of median we have
A361910.
A361864 counts set partitions with integer median of medians, means
A361865.
A361866 counts set partitions with integer sum of medians, means
A361911.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],(n+1)/2==Median[Median/@#]&]],{n,6}]
A364026
Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 26, 14, 1, 1, 0, 1, 236, 509, 49, 1, 1, 0, 1, 2752, 35839, 10340, 175, 1, 1, 0, 1, 39208, 4154652, 5941404, 222244, 637, 1, 1, 0, 1, 660032, 718142257, 7244337796, 1081112575, 4981531, 2353, 1, 1, 0, 1, 12818912, 173201493539
Offset: 0
The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26.
The table T(n,k) begins:
[n/k] 0 1 2 3 4 5 ...
--------------------------------------------------------------------
[0] 1, 1, 0, 0, 0, 0, ...
[1] 1, 1, 1, 1, 1, 1, ...
[2] 1, 1, 4, 26, 236, 2572, ...
[3] 1, 1, 14, 509, 35839, 4154652, ...
[4] 1, 1, 49, 10340, ...
[5] 1, 1, 175, 222244, ...
[6] 1, 1, 637, ...
- Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446.
- Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189.
-
pp p n k
| n == 0 && k >= 2 = 0
| k == 0 && p == 0 = 1
| k == 0 && p >= 1 = 0
| n == 0 && k == 1 && p == 0 = 1
| n == 0 && k == 1 && p >= 1 = 0
| n == 1 && k >= 1 && k == p = 1
| n == 1 && k >= 1 && k /= p = 0
| n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]]
binom n 0 = 1
binom 0 k = 0
binom n k = binom (n-1) (k-1) * n `div` k
a364026 n k =
sum [pp p n k | p <- [0..n*k]]
A361802
Irregular triangle read by rows where T(n,k) is the number of k-subsets of {-n+1,...,n} with sum 0, for k = 1,...,2n-1.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 5, 2, 1, 1, 4, 10, 16, 18, 14, 8, 3, 1, 1, 5, 15, 31, 46, 51, 43, 27, 12, 3, 1, 1, 6, 21, 53, 98, 139, 155, 134, 88, 43, 16, 4, 1, 1, 7, 28, 83, 184, 319, 441, 486, 424, 293, 161, 68, 21, 4, 1
Offset: 1
Triangle begins:
1
1 1 1
1 2 3 2 1
1 3 6 7 5 2 1
1 4 10 16 18 14 8 3 1
1 5 15 31 46 51 43 27 12 3 1
1 6 21 53 98 139 155 134 88 43 16 4 1
1 7 28 83 184 319 441 486 424 293 161 68 21 4 1
Row n = 3 counts the following subsets:
{0} {-1,1} {-1,0,1} {-2,-1,0,3} {-2,-1,0,1,2}
{-2,2} {-2,0,2} {-2,-1,1,2}
{-2,-1,3}
A067538 counts partitions with integer mean.
-
Table[Length[Select[Subsets[Range[-n+1,n],{k}],Total[#]==0&]],{n,6},{k,2n-1}]
Comments