cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A342051 Numbers k which have an even number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is even.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * (1 - Sum_{k=1..m}(-1)^k/A002110(k)) = 1, 4, 19, 134, 1473, 19150, 325549 ...
The asymptotic density of this sequence is Sum_{k>=0} (-1)^k/A002110(k) = 0.637693... = 1 - A132120.
Also Heinz numbers of partitions with odd least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021

Examples

			1 is a term since A049345(1) = 1 has 0 trailing zero.
6 is a term since A049345(6) = 100 has 2 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
     1: {}           25: {3,3}          51: {2,7}
     3: {2}          27: {2,2,2}        53: {16}
     5: {3}          29: {10}           54: {1,2,2,2}
     6: {1,2}        31: {11}           55: {3,5}
     7: {4}          33: {2,5}          57: {2,8}
     9: {2,2}        35: {3,4}          59: {17}
    11: {5}          36: {1,1,2,2}      61: {18}
    12: {1,1,2}      37: {12}           63: {2,2,4}
    13: {6}          39: {2,6}          65: {3,6}
    15: {2,3}        41: {13}           66: {1,2,5}
    17: {7}          42: {1,2,4}        67: {19}
    18: {1,2,2}      43: {14}           69: {2,9}
    19: {8}          45: {2,2,3}        71: {20}
    21: {2,4}        47: {15}           72: {1,1,1,2,2}
    23: {9}          48: {1,1,1,1,2}    73: {21}
    24: {1,1,1,2}    49: {4,4}          75: {2,3,3}
(End)
		

Crossrefs

Complement of A342050.
A099788 is subsequence.
Analogous sequences: A000201 (Zeckendorf representation), A003159 (binary), A007417 (ternary), A232744 (factorial base).
The version for reversed binary expansion is A121539.
Positions of odd terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A339662 gives greatest gap in prime indices.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],OddQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)

A056832 All a(n) = 1 or 2; a(1) = 1; get next 2^k terms by repeating first 2^k terms and changing last element so sum of first 2^(k+1) terms is odd.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Jonas Wallgren, Aug 30 2000

Keywords

Comments

Dekking (2016) calls this the Toeplitz sequence or period-doubling sequence. - N. J. A. Sloane, Nov 08 2016
Fixed point of the morphism 1->12 and 2->11 (1 -> 12 -> 1211 -> 12111212 -> ...). - Benoit Cloitre, May 31 2004
a(n) is multiplicative. - Christian G. Bower, Jun 03 2005
a(n) is the least k such that A010060(n-1+k) = 1 - A010060(n-1); the sequence {a(n+1)-1} is the characteristic sequence for A079523. - Vladimir Shevelev, Jun 22 2009
The squarefree part of the even part of n. - Peter Munn, Dec 03 2020

Examples

			1 -> 1,2 -> 1,2,1,1 -> 1,2,1,1,1,2,1,2 -> 1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1.
Here we have 1 element, then 2 elements, then 4, 8, 16, etc.
		

References

  • Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991; pp. 277-279.

Crossrefs

Cf. A197911 (partial sums).
Essentially same as first differences of Thue-Morse, A010060. - N. J. A. Sloane, Jul 02 2015
See A035263 for an equivalent version.
Limit of A317956(n) for large n.
Row/column 2 of A059895.
Positions of 1s: A003159.
Positions of 2s: A036554.
A002425, A006519, A079523, A096268, A214682, A234957 are used in a formula defining this sequence.
A059897 is used to express relationship between terms of this sequence.

Programs

  • Haskell
    a056832 n = a056832_list !! (n-1)
    a056832_list = 1 : f [1] where
       f xs = y : f (y : xs) where
              y = 1 + sum (zipWith (*) xs $ reverse xs) `mod` 2
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Mathematica
    Nest[ Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 1}})]}], {1}, 7] (* Robert G. Wilson v, Mar 03 2005 *)
    Table[Mod[-(-1)^(n + 1) (-1)^n Numerator[EulerE[2 n + 1, 1]], 3] , {n, 0, 120}] (* Michael De Vlieger, Aug 15 2016, after Jean-François Alcover at A002425 *)
  • PARI
    a(n)=numerator(2/n*(4^n-1)*bernfrac(2*n))%3
    
  • PARI
    a(n)=if(n<1, 0, valuation(n,2)%2+1) /* Michael Somos, Jun 18 2005 */
    
  • Python
    def A056832(n): return 1+((~n&n-1).bit_length()&1) # Chai Wah Wu, Jan 09 2023

Formula

a(n) = ((-1)^(n+1)*A002425(n)) modulo 3. - Benoit Cloitre, Dec 30 2003
a(1)=1, a(n) = 1 + ((Sum_{i=1..n-1} a(i)*a(n-i)) mod 2). - Benoit Cloitre, Mar 16 2004
a(n) is multiplicative with a(2^e) = 1 + (1-(-1)^e)/2, a(p^e)=1 if p > 2. - Michael Somos, Jun 18 2005
[a(2^n+1) .. a(2^(n+1)-1)] = [a(1) .. a(2^n-1)]; a(2^(n+1)) = 3 - a(2^n).
For n > 0, a(n) = 2 - A035263(n). - Benoit Cloitre, Nov 24 2002
a(n)=2 if n-1 is in A079523; a(n)=1 otherwise. - Vladimir Shevelev, Jun 22 2009
a(n) = A096268(n-1) + 1. - Reinhard Zumkeller, Jul 29 2014
From Peter Munn, Dec 03 2020: (Start)
a(n) = A007913(A006519(n)) = A006519(n)/A234957(n).
a(n) = A059895(n, 2) = n/A214682(n).
a(n*k) = (a(n) * a(k)) mod 3.
a(A059897(n, k)) = A059897(a(n), a(k)).
(End)
Asymptotic mean: lim_{m->oo} (1/m) * Sum__{k=1..m} a(k) = 4/3. - Amiram Eldar, Mar 09 2021

A161579 Positions n such that A010060(n) = A010060(n+3).

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 70, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Vladimir Shevelev, Jun 14 2009

Keywords

Comments

Or: union of A131323 with the sequence of terms of the form A131323(n)-2, and with the sequence of terms of the form A036554(n)-2.
Conjecture: In every sequence of numbers n such that A010060(n)=A010060(n+k), for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. - Vladimir Shevelev, Jul 31 2009

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+3], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+3)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Equals {A001477} \ {A161580}.

Extensions

More terms from R. J. Mathar, Aug 17 2009

A003158 A self-generating sequence (see Comments in A003156 for the definition).

Original entry on oeis.org

2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, 50, 53, 56, 61, 66, 71, 74, 77, 82, 87, 92, 95, 98, 103, 108, 113, 116, 119, 124, 127, 130, 135, 138, 141, 146, 151, 156, 159
Offset: 1

Views

Author

Keywords

Comments

Numbers not of the form Sum_{i>=2} e_i*A001045(i), with e(i) = 0 or 1.
Indices of b in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Python
    def A003158(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)+n-1 # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A003157(n) - 1 = A079523(n) + n. - Philippe Deléham, Feb 22 2004

Extensions

Definition clarified by N. J. A. Sloane, Dec 26 2020

A161580 Positions n such that A010060(n) + A010060(n+3) = 1.

Original entry on oeis.org

2, 5, 7, 10, 14, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 46, 50, 53, 55, 58, 62, 66, 69, 71, 74, 78, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 110, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 142, 146, 149, 151, 154, 157, 159, 162, 165, 167, 170, 174, 178, 181, 183, 186
Offset: 1

Views

Author

Vladimir Shevelev, Jun 14 2009

Keywords

Comments

Conjecture: In every sequence of numbers n such that A010060(n) + A010060(n+k) = 1, for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [From Vladimir Shevelev, Jul 31 2009]

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] + tm[n+3] == 1, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
  • PARI
    is(n)=hammingweight(n)%2+hammingweight(n+3)%2==1 \\ Charles R Greathouse IV, Mar 22 2013

Formula

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161627 Positions n such that A010060(n)=A010060(n+4).

Original entry on oeis.org

4, 5, 6, 7, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 52, 53, 54, 55, 68, 69, 70, 71, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 116, 117, 118, 119, 124, 125, 126, 127, 132, 133, 134, 135, 148, 149, 150, 151, 156, 157, 158, 159, 164, 165, 166, 167, 180, 181, 182
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Or: union of the numbers of the form 4*A079523(n)+k, k=0, 1, 2, or 3.
Locates patterns of the form 1xxx1 or 0xxx0 in the Thue-Morse sequence.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+4], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
    SequencePosition[ThueMorse[Range[200]],{x_,,,_,x_}][[All,1]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Apr 16 2017 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+4)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Extended by R. J. Mathar, Aug 28 2009

A161639 Positions n such that A010060(n) = A010060(n+8).

Original entry on oeis.org

8, 9, 10, 11, 12, 13, 14, 15, 40, 41, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 74, 75, 76, 77, 78, 79, 104, 105, 106, 107, 108, 109, 110, 111, 136, 137, 138, 139, 140, 141, 142, 143, 168, 169, 170, 171, 172, 173, 174, 175, 184, 185, 186, 187, 188, 189
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Locates correlations of the form 1xxxxxxx1 or 0xxxxxxx0 in the Thue-Morse sequence.
Or: union of numbers 8*A079523(n)+k, k=0, 1, 2, 3, 4, 5, 6, or 7.
Generalization: the numbers n such that A010060(n) = A010060(n+2^m) constitute the union of sequences {2^m*A079523(n)+k}, k=0,1,...,2^m-1.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+8], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
    SequencePosition[ThueMorse[Range[0,200]],{x_,,,_,,,_,,x}][[All,1]]-1 (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+8)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Duplicate of 174 removed by R. J. Mathar, Aug 28 2009

A003156 A self-generating sequence (see Comments for definition).

Original entry on oeis.org

1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 33, 36, 37, 38, 41, 44, 47, 48, 49, 52, 55, 58, 59, 60, 63, 64, 65, 68, 69, 70, 73, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 97, 100, 101, 102, 105, 106, 107, 110, 111, 112, 115, 118, 121, 122, 123, 126, 129, 132
Offset: 1

Views

Author

Keywords

Comments

From N. J. A. Sloane, Dec 26 2020: (Start)
The best definitions of the triple [this sequence, A003157, A003158] are as the rows a(n), b(n), c(n) of the table:
n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
a: 1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, ...
b: 3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, ...
c: 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, ...
where a(1)=1, b(1)=3, c(1)=2, and thereafter
a(n) = mex{a(i), b(i), c(i), i
b(n) = a(n) + 2*n,
c(n) = b(n) - 1.
Then a,b,c form a partition of the positive integers.
Note that there is another triple of sequences (A003144, A003145, A003146) also called a, b, c and also a partition of the positive integers, in a different paper by the same authors (Carlitz-Scovelle-Hoggatt) in the same volume of the same journal.
(End)
a(n) is the number of ones before the n-th zero in the Feigenbaum sequence A035263. - Philippe Deléham, Mar 27 2004
Number of odd numbers before the n-th even number in A007413, A007913, A001511, A029883, A033485, A035263, A036585, A065882, A065883, A088172, A092412. - Philippe Deléham, Apr 03 2004
Indices of a in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    following Deléham
    a003156 n = a003156_list !! (n-1)
    a003156_list = scanl1 (+) a080426_list
    -- Reinhard Zumkeller, Oct 27 2014
    
  • Maple
    a:= proc(n) global l; while nops(l) [1, 3$d, 1][], l) od; `if` (n=1, 1, a(n-1) +l[n]) end: l:= [1]: seq (a(n), n=1..80); # Alois P. Heinz, Oct 31 2009
  • Mathematica
    Position[Nest[Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 7], 0] // Flatten (* Jean-François Alcover, Mar 14 2014 *)
  • Python
    def A003156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-n # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n) - n + 1 = A003157(n) - 2n = A003158(n) - 2n + 1. - Philippe Deléham, Feb 28 2004
a(n) = A036554(n) - n = A072939(n) - n - 1 = 2*A003159(n) - n. - Philippe Deléham, Apr 10 2004
a(n) = Sum_{k = 1..n} A080426(k). - Philippe Deléham, Apr 16 2004

Extensions

More terms from Alois P. Heinz, Oct 31 2009
Incorrect equation removed from formula by Peter Munn, Dec 11 2020

A161641 Positions n such that A010060(n) + A010060(n+4) = 1.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99, 104, 105, 106, 107, 108
Offset: 1

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Also union of all numbers of the form A131323(n)-k, k=0, 1, 2, or 3.

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 16000, n++, If[tm[n] + tm[n + 4] == 1, Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 01 2018 *)
  • PARI
    is(n)=hammingweight(n)%2!=hammingweight(n+4)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161674 Positions n such that A010060(n) + A010060(n+2) = 1.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 44, 45, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104
Offset: 1

Author

Vladimir Shevelev, Jun 16 2009

Keywords

Comments

Locates patterns of the form 0x1 or 1x0 in the Thue-Morse sequence.
Complement to A081706. Also: union of sequences {2*A121539(n)+k}, k=0 or 1, generalized in A161673.
Also union of sequences {A079523(n)-k}, k=0 or 1. For a generalization see A161890. - Vladimir Shevelev, Jul 05 2009
The asymptotic density of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021

Programs

Extensions

Extended by R. J. Mathar, Aug 28 2009
Previous Showing 11-20 of 36 results. Next