cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A108396 Triangle read by rows: T(n,k) = n*(1+n^k)/2, 0<=k<=n.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 3, 6, 15, 42, 4, 10, 34, 130, 514, 5, 15, 65, 315, 1565, 7815, 6, 21, 111, 651, 3891, 23331, 139971, 7, 28, 175, 1204, 8407, 58828, 411775, 2882404, 8, 36, 260, 2052, 16388, 131076, 1048580, 8388612, 67108868, 9, 45, 369, 3285, 29529, 265725
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 02 2005

Keywords

Comments

Row sums give A108397;
T(n,0) = A001477(n);
T(n,1) = A000217(n) for n>0;
T(n,2) = A006003(n) for n>1;
T(n,3) = A027441(n) for n>2;
T(n,4) = A021003(n) for n>3;
T(n,n) = A108398(n).

Examples

			.  0:  0
.  1:  1  1
.  2:  2  3   5
.  3:  3  6  15   42
.  4:  4 10  34  130   514
.  5:  5 15  65  315  1565   7815
.  6:  6 21 111  651  3891  23331  139971
.  7:  7 28 175 1204  8407  58828  411775  2882404
.  8:  8 36 260 2052 16388 131076 1048580  8388612  67108868
.  9:  9 45 369 3285 29529 265725 2391489 21523365 193710249 1743392205 .
		

Crossrefs

Cf. A079901, A000312, A033918, A001477, A000217, A006003, A027441, A021003, A108398, A108397 (row sums), A256512 (central terms).

Programs

  • Haskell
    a108396 n k = a108396_tabl !! n !! k
    a108396_row n = a108396_tabl !! n
    a108396_tabl = zipWith (\v ws -> map (flip div 2 . (* v) . (+ 1)) ws)
                           [0..] a079901_tabl
    -- Reinhard Zumkeller, Mar 31 2015
  • Mathematica
    Join[{0},Flatten[Table[n (1+n^k)/2,{n,10},{k,0,n}]]] (* Harvey P. Dale, Mar 19 2015 *)

Extensions

Offset changed by Reinhard Zumkeller, Mar 31 2015

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A384119 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 16, 48, 16, 5, 1, 1, 6, 25, 64, 64, 25, 6, 1, 1, 7, 36, 125, 488, 125, 36, 7, 1, 1, 8, 49, 216, 625, 625, 216, 49, 8, 1, 1, 9, 64, 343, 1296, 6130, 1296, 343, 64, 9, 1, 1, 10, 81, 512, 2401, 7776, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Andrew Howroyd, May 20 2025

Keywords

Comments

For m <= n, the minimum size of a dominating set is m. When m < n, solutions have exactly one vertex in each column. In the special case of n = m, solutions either have exactly one vertex in each column or have exactly one vertex in each row.

Examples

			Array begins:
=======================================================
n\m | 0 1  2   3    4     5      6       7        8 ...
----+--------------------------------------------------
  0 | 1 1  1   1    1     1      1       1        1 ...
  1 | 1 1  2   3    4     5      6       7        8 ...
  2 | 1 2  6   9   16    25     36      49       64 ...
  3 | 1 3  9  48   64   125    216     343      512 ...
  4 | 1 4 16  64  488   625   1296    2401     4096 ...
  5 | 1 5 25 125  625  6130   7776   16807    32768 ...
  6 | 1 6 36 216 1296  7776  92592  117649   262144 ...
  7 | 1 7 49 343 2401 16807 117649 1642046  2097152 ...
  8 | 1 8 64 512 4096 32768 262144 2097152 33514112 ...
  ...
		

Crossrefs

Main diagonal is A248744.

Programs

  • PARI
    T(n,m) = {if(n<=m, m^n) + if(m<=n, n^m) - if(m==n, n!)}

Formula

T(n,m) = T(m,n).
T(n,m) = n^m for m < n.

A376878 Triangle read by rows: T(n, k) = n^k * n! * [x^k][y^n]((sec(y) + tan(y)) * exp(x*y)).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 2, 9, 27, 27, 5, 32, 96, 256, 256, 16, 125, 500, 1250, 3125, 3125, 61, 576, 2700, 8640, 19440, 46656, 46656, 272, 2989, 16464, 60025, 168070, 352947, 823543, 823543, 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216
Offset: 0

Views

Author

Peter Luschny, Oct 13 2024

Keywords

Examples

			Triangle starts:
  [0]    1;
  [1]    1,     1;
  [2]    1,     4,      4;
  [3]    2,     9,     27,     27;
  [4]    5,    32,     96,    256,     256;
  [5]   16,   125,    500,   1250,    3125,    3125;
  [6]   61,   576,   2700,   8640,   19440,   46656,   46656;
  [7]  272,  2989,  16464,  60025,  168070,  352947,  823543,   823543;
  [8] 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216;
		

Crossrefs

Cf. A000111, A000312, A079901, A109449, A292976 (row sums).

Programs

  • Maple
    P := n -> coeff(series((sec(y) + tan(y)) * exp(x*y), y, 12), y, n):
    seq(seq(coeff(P(n), x,  k) * n^k * n!, k = 0..n), n = 0..8);
    T := (n, k) -> ifelse(n = k, n^n, (-1)^binomial(n - k, 2)*n^k*binomial(n, k)*(euler(n - k) - euler(n - k, 0)*2^(n - k))):
    seq(print([n], seq(T(n, k), k = 0..n)), n = 0..8);
  • Python
    from math import comb, isqrt
    from sympy import bernoulli, euler
    def A000111(n): return abs(((1<A376878(n): return comb(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),b:=n-comb(a+1,2))*a**b*A000111(a-b) # Chai Wah Wu, Nov 13 2024

Formula

T(n, k) = (-1)^binomial(n-k, 2)*n^k*binomial(n, k)*(Euler(n-k) - Euler(n-k, 0)*2^(n - k)) for 0 <= k < n and n^n for n = k.
T(n, k) = n^k*A109449(n, k) = n^k*binomial(n, k)*A000111(n - k).

A364870 Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Aug 11 2023

Keywords

Examples

			The array begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,    9,    16,    25,    36,     49, ...
    27,   64,   125,   216,   343,    512, ...
   256,  625,  1296,  2401,  4096,   6561, ...
  3125, 7776, 16807, 32768, 59049, 100000, ...
  ...
		

Crossrefs

Cf. A000012 (n=0), A000169, A000272, A000312 (k=0), A007830 (k=3), A008785 (k=4), A008786 (k=5), A008787 (k=6), A031973 (antidiagonal sums), A052746 (2nd superdiagonal), A052750, A062971 (main diagonal), A079901 (read by descending antidiagonals), A085527 (1st superdiagonal), A085528 (1st subdiagonal), A085532, A099753.

Programs

  • Mathematica
    A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten

Formula

E.g.f. of k-th column: LambertW(-x)^k/(x^k*(1 + LambertW(-x))).
Previous Showing 11-15 of 15 results.