cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A156859 The main column of a version of the square spiral.

Original entry on oeis.org

0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0

Views

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

Keywords

Comments

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018
It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).
Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012
Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

Crossrefs

Cf. A000290, A000384, A004526, A014601 (first differences), A115258.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024

Extensions

More terms added by Wesley Ivan Hurt, Oct 11 2013

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A137928 The even principal diagonal of a 2n X 2n square spiral.

Original entry on oeis.org

2, 4, 10, 16, 26, 36, 50, 64, 82, 100, 122, 144, 170, 196, 226, 256, 290, 324, 362, 400, 442, 484, 530, 576, 626, 676, 730, 784, 842, 900, 962, 1024, 1090, 1156, 1226, 1296, 1370, 1444, 1522, 1600, 1682, 1764, 1850, 1936, 2026, 2116, 2210, 2304, 2402, 2500, 2602, 2704, 2810
Offset: 1

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

This is concerned with 2n X 2n square spirals of the form illustrated in the Example section.

Examples

			Example with n = 2:
.
   7---8---9--10
   |           |
   6   1---2  11
   |       |   |
   5---4---3  12
               |
  16--15--14--13
.
a(1) = 2(1) + 4*floor((1-1)/4) = 2;
a(2) = 2(2) + 4*floor((2-1)/4) = 4.
		

Crossrefs

Cf. A000982, A002061 (odd diagonal), A002620, A080335, A171218.

Programs

Formula

a(n) = 2*n + 4*floor((n-1)^2/4) = 2*n + 4*A002620(n-1).
a(n) = A171218(n) - A171218(n-1). - Reinhard Zumkeller, Dec 05 2009
From R. J. Mathar, Jun 27 2011: (Start)
G.f.: 2*x*(1 + x^2) / ( (1 + x)*(1 - x)^3 ).
a(n) = 2*A000982(n). (End)
a(n+1) = (3 + 4*n + 2*n^2 + (-1)^n)/2 = A080335(n) + (-1)^n. - Philippe Deléham, Feb 17 2012
a(n) = 2 * ceiling(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = n^2 + (n mod 2). - Bruno Berselli, Oct 03 2017
Sum_{n>=1} 1/a(n) = Pi*tanh(Pi/2)/4 + Pi^2/24. - Amiram Eldar, Jul 07 2022

A081348 First row in maze arrangement of natural numbers.

Original entry on oeis.org

1, 6, 7, 20, 21, 42, 43, 72, 73, 110, 111, 156, 157, 210, 211, 272, 273, 342, 343, 420, 421, 506, 507, 600, 601, 702, 703, 812, 813, 930, 931, 1056, 1057, 1190, 1191, 1332, 1333, 1482, 1483, 1640, 1641, 1806, 1807, 1980, 1981, 2162, 2163, 2352, 2353, 2550
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^2+4*n+3-(2*n+1)*(-1)^n)/2: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
  • Mathematica
    CoefficientList[Series[(1 + 5 x - x^2 + 3 x^3) / ((1 - x)^3 (1 + x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)

Formula

a(n) = (2*n^2+4*n+3-(2*n+1)(-1)^n)/2.
a(2*n) = A054569(n).
a(2*n+1) = 2*A014105(n+1).
G.f.: (1+5*x-x^2+3*x^3)/((1-x)^3*(1+x)^2). - Colin Barker, Apr 17 2012

A081347 First column in maze arrangement of natural numbers.

Original entry on oeis.org

1, 2, 3, 12, 13, 30, 31, 56, 57, 90, 91, 132, 133, 182, 183, 240, 241, 306, 307, 380, 381, 462, 463, 552, 553, 650, 651, 756, 757, 870, 871, 992, 993, 1122, 1123, 1260, 1261, 1406, 1407, 1560, 1561, 1722, 1723, 1892, 1893, 2070, 2071, 2256, 2257, 2450, 2451
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves two times the hexagonal numbers A000384 with A054554.

Examples

			Starting with 1,2,3, turn (LL) and then repeat (RRR)(LLL) to get
1 6 7 20
2 5 8 19
3 4 9 18
12 11 10 17
		

Crossrefs

Programs

  • Magma
    [((1+2*n^2)+(1-2*n)*(-1)^n)/2: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
  • Mathematica
    CoefficientList[Series[(1 + x - x^2 + 7 x^3) / ((1 - x)^3 (1 + x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 08 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,3,12,13},60] (* Harvey P. Dale, Aug 13 2025 *)

Formula

a(n) = ((1+2*n^2)+(1-2*n)*(-1)^n)/2.
a(2n) = A054554(n).
a(2n+1) = 2*A000384(n).
G.f.: (1+x-x^2+7*x^3)/((1-x)^3*(1+x)^2). [Colin Barker, Apr 17 2012]

A086955 a(n) = n^2 + 2*n + 2 - (-1)^n.

Original entry on oeis.org

1, 6, 9, 18, 25, 38, 49, 66, 81, 102, 121, 146, 169, 198, 225, 258, 289, 326, 361, 402, 441, 486, 529, 578, 625, 678, 729, 786, 841, 902, 961, 1026, 1089, 1158, 1225, 1298, 1369, 1446, 1521, 1602, 1681, 1766, 1849, 1938, 2025, 2118, 2209, 2306, 2401, 2502
Offset: 0

Views

Author

Paul Barry, Jul 25 2003

Keywords

Crossrefs

Cf. A080335.

Programs

Formula

G.f.: (1 + 4*x - 3*x^2 + 2*x^3)/((1+x)*(1-x)^3).
a(2*n) = (2*n+1)^2 = A016754(n), a(2*n+1) = 4*n^2 + 8*n + 6 = A005899(n+1).

A093650 Natural numbers arranged in a square maze beginning 1, 2, 3, then moving right, then up, right, down, left, down, right, etc., and read by antidiagonals upwards.

Original entry on oeis.org

1, 2, 6, 3, 5, 7, 12, 4, 8, 20, 13, 11, 9, 19, 21, 30, 14, 10, 18, 22, 42, 31, 29, 15, 17, 23, 41, 43, 56, 32, 28, 16, 24, 40, 44, 72, 57, 55, 33, 27, 25, 39, 45, 71, 73, 90, 58, 54, 34, 26, 38, 46, 70, 74, 110, 91, 89, 59, 53, 35, 37, 47, 69, 75, 109, 111
Offset: 1

Views

Author

Michael Joseph Halm, May 15 2004

Keywords

Examples

			a(3) = 6 because the maze begins 2 under 1, 3 under 2, 4 right of 3, 5 right of 2 and 6 right of 1.
Array begins:
   1   6---7  20 ...
   |   |   |   |
   2   5   8  19 ...
   |   |   |   |
   3---4   9  18 ...
           |   |
  12--11--10  17 ...
   |           |
  13--14--15--16 ...
  ...
		

Crossrefs

Other square mazes: A081344, A081349.

Extensions

More terms from Jinyuan Wang, Jun 15 2022

A357745 Numbers on the 8 main spokes of a square spiral with 1 in the center.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 53, 57, 61, 65, 69, 73, 77, 81, 86, 91, 96, 101, 106, 111, 116, 121, 127, 133, 139, 145, 151, 157, 163, 169, 176, 183, 190, 197, 204, 211, 218, 225, 233, 241, 249, 257, 265, 273
Offset: 1

Views

Author

Karl-Heinz Hofmann, Dec 22 2022

Keywords

Comments

The 8 main spokes are (with 1 in the center, 2 to the east, 3 to the northeast): east: A054552; northeast: A054554; north: A054556; northwest: A053755; west: A054567; southwest: A054569; south: A033951; southeast: A016754.
Alternatively the 8 main spokes are pairwise part of the 4 main axes: horizontal: A317186; vertical: A267682; diagonal: A002061; antidiagonal: A080335.
And lastly the 4 main axes are giving two main crosses: Horizontal-vertical cross: A039823; Diagonal-antidiagonal cross: A200975.

Examples

			See visualization in links.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 - x^8 + x^9)/((1 - x)^3*(1 + x) (1 + x^2) (1 + x^4)), {x, 0, 63}], x] (* Michael De Vlieger, Dec 29 2022 *)
    a[n_] := BitShiftRight[(n + 3)^2, 4] + Boole[BitAnd[n, 7] != 1]; Array[a, 65] (* Amiram Eldar, Dec 30 2022, after the PARI code *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11},70] (* Harvey P. Dale, Jul 13 2025 *)
  • PARI
    a(n) = sqr(n+3)>>4 + (bitand(n,7)!=1); \\ Kevin Ryde, Dec 30 2022
  • Python
    def A357745(n): return ((n+3)**2 >> 4) + 1 if n % 8 != 1 else (n+3)**2 >> 4
    

Formula

G.f.: x*(1-x^8+x^9)/((1-x)^3*(1+x)*(1+x^2)*(1+x^4)). - Joerg Arndt, Dec 29 2022
a(n) = floor((n+3)^2 / 16) + (1 if n != 1 mod 8). - Kevin Ryde, Dec 30 2022

A087431 a(n) = 0^n/2 + 2^n*(n^2+n+2)/4.

Original entry on oeis.org

1, 2, 8, 28, 88, 256, 704, 1856, 4736, 11776, 28672, 68608, 161792, 376832, 868352, 1982464, 4489216, 10092544, 22544384, 50069504, 110624768, 243269632, 532676608, 1161822208, 2524971008, 5469372416, 11811160064, 25434259456
Offset: 0

Views

Author

Paul Barry, Sep 02 2003

Keywords

Comments

Binomial transform of A080335 (with additional leading 1).

Programs

  • Mathematica
    LinearRecurrence[{6,-12,8},{1,2,8,28},30] (* Harvey P. Dale, Nov 26 2015 *)

Formula

a(n) = 2*A007466(n) for n >= 1.
G.f.: (1-4*x+8*x^2-4*x^3)/(1-2*x)^3. - Colin Barker, Mar 18 2012
Previous Showing 21-30 of 31 results. Next