A104891
a(0) = 0; a(n) = 5*a(n-1) + 5.
Original entry on oeis.org
0, 5, 30, 155, 780, 3905, 19530, 97655, 488280, 2441405, 12207030, 61035155, 305175780, 1525878905, 7629394530, 38146972655, 190734863280, 953674316405, 4768371582030, 23841857910155, 119209289550780, 596046447753905, 2980232238769530, 14901161193847655
Offset: 0
a(3) = 5*a(2) + 5 = 5*30 + 5 = 155.
-
[5*(5^n -1)/4: n in [0..30]]; // G. C. Greubel, Jun 15 2021
-
a:=n->add(5^j,j=1..n): seq(a(n),n=0..30); # Zerinvary Lajos, Jun 27 2007
-
RecurrenceTable[{a[n]==5*a[n-1]+5, a[0]==0}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 25 2014 *)
NestList[5#+5&,0,30] (* Harvey P. Dale, Oct 04 2019 *)
-
concat(0, Vec(5*x/((x-1)*(5*x-1)) + O(x^30))) \\ Colin Barker, Jul 25 2014
-
[5*(5^n -1)/4 for n in (0..30)] # G. C. Greubel, Jun 15 2021
A104896
a(0) = 0; a(n) = 7*a(n-1) + 7.
Original entry on oeis.org
0, 7, 56, 399, 2800, 19607, 137256, 960799, 6725600, 47079207, 329554456, 2306881199, 16148168400, 113037178807, 791260251656, 5538821761599, 38771752331200, 271402266318407, 1899815864228856, 13298711049601999, 93090977347214000, 651636841430498007
Offset: 0
-
[(7/6)*(7^n -1): n in [0..30]]; // G. C. Greubel, Jun 09 2021
-
a:=n->sum (7^j,j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Oct 03 2007
-
RecurrenceTable[{a[n]==7*a[n-1]+7,a[0]==0},a,{n,0,30}] (* Vaclav Kotesovec, Jul 25 2014 *)
-
concat(0, Vec(7*x/((x-1)*(7*x-1)) + O(x^30))) \\ Colin Barker, Jul 25 2014
-
[(7/6)*(7^n -1) for n in (0..30)] # G. C. Greubel, Jun 09 2021
A105281
a(0)=0; a(n) = 6*a(n-1) + 6.
Original entry on oeis.org
0, 6, 42, 258, 1554, 9330, 55986, 335922, 2015538, 12093234, 72559410, 435356466, 2612138802, 15672832818, 94036996914, 564221981490, 3385331888946, 20311991333682, 121871948002098, 731231688012594, 4387390128075570, 26324340768453426, 157946044610720562
Offset: 0
-
a:=n->add(6^j,j=1..n): seq(a(n),n=0..30); # Zerinvary Lajos, Oct 03 2007
-
NestList[6#+6&,0,30] (* Harvey P. Dale, Jul 24 2012 *)
-
a(n)=if(n<0,0, (6^n-1)*6/5)
A263133
Numbers m such that binomial(4*m + 3, m) is odd.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 10, 11, 15, 21, 23, 31, 42, 43, 47, 63, 85, 87, 95, 127, 170, 171, 175, 191, 255, 341, 343, 351, 383, 511, 682, 683, 687, 703, 767, 1023, 1365, 1367, 1375, 1407, 1535, 2047, 2730, 2731, 2735, 2751, 2815, 3071, 4095, 5461, 5463, 5471, 5503
Offset: 1
1) This sequence can be read from Table 1 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 42 in the first row we jump 42 -> 43 -> 47 -> 63, then return to the second row at 85 and jump 85 -> 87 -> 95 -> 127, followed by 170 -> 171 -> 175 -> 191 -> 255, and so on.
...........................................................
. Table 1. 2^n*ceiling((2^(2*k + 1) - 1)/3) - 1, n,k >= 0 .
...........................................................
n\k| 0 1 2 3 4 5
---+---------------------------------
0 | 0 2 10 42 170 682 ...
1 | 1 5 21 85 341 ...
2 | 3 11 43 171 683 ...
3 | 7 23 87 343 ...
4 | 15 47 175 687 ...
5 | 31 95 351 ...
6 | 63 191 703 ...
7 | 127 383 ...
8 | 255 767 ...
9 | 511 ...
...
The first row of the table is A020988. The columns of the table are obtained by repeatedly applying the transformation m -> 2*m + 1 to the entries in the first row.
2) Alternatively, this sequence can be read from Table 2 below by starting with a number on the top row and moving in a series of 'knight moves' (1 down and 2 to the left) through the table as far as you can, before returning to the next number in the top row and repeating the process. For example, starting at 10 in the first row we move 10 -> 11 -> 15, then return to the top row at 21 and move 21 -> 23 -> 31, before returning to the top row at 42 and so on.
........................................................
. Table 2. (4^n)*ceiling(2^k/3) - 1 for n >= 0, k >= 1 .
........................................................
n\k| 1 2 3 4 5 6 7 8 9 10
---+---------------------------------------------------------
0| 0 1 2 5 10 21 42 85 170 682...
1| 3 7 11 23 43 87 171 343 683 ...
2| 15 31 47 95 175 351 687 1375 ...
3| 63 127 191 383 703 1407 2751 5503 ...
4| 255 511 767 1535 2815 5631 11007 22015 ...
5| 1023 2047 3071 6143 11263 22527 44031 88063 ...
6| 4095 ...
...
The first row of the table is A000975. The columns of the table are obtained by repeatedly applying the transformation m -> 4*m + 3 to the entries in the first row.
Other odd binomials:
A263132 (4*m-1,m),
A002450 (4*m+1,m),
A020988 (4*m+2,m),
A080674 (4*m+4,m),
A118113 (3*m-2,m),
A003714 (3*m,m).
-
[n: n in [0..6000] | Binomial(4*n+3, n) mod 2 eq 1]; // Vincenzo Librandi, Oct 12 2015
-
for n from 1 to 4096 do if mod(binomial(4*n+3, n), 2) = 1 then print(n) end if end do;
-
Select[Range[0,5600],OddQ[Binomial[4#+3,#]]&] (* Harvey P. Dale, Apr 15 2019 *)
-
for(n=0, 1e4, if (binomial(4*n+3, n) % 2 == 1, print1(n", "))) \\ Altug Alkan, Oct 11 2015
-
a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<Kevin Ryde, Jul 06 2025
-
A263133_list = [m for m in range(10**6) if not ~(4*m+3) & m] # Chai Wah Wu, Feb 07 2016
A105280
a(0)=0; a(n) = 11*a(n-1) + 11.
Original entry on oeis.org
0, 11, 132, 1463, 16104, 177155, 1948716, 21435887, 235794768, 2593742459, 28531167060, 313842837671, 3452271214392, 37974983358323, 417724816941564, 4594972986357215, 50544702849929376, 555991731349223147, 6115909044841454628, 67274999493256000919, 740024994425816010120
Offset: 0
-
a:=n-> add(11^j,j=1..n): seq(a(n),n=0..12); # Zerinvary Lajos, Oct 03 2007
-
NestList[11#+11&,0,20] (* or *) LinearRecurrence[{12,-11},{0,11},20] (* Harvey P. Dale, Dec 02 2023 *)
A155721
Positions of parity change in A033035.
Original entry on oeis.org
4, 20, 84, 340, 1364, 5460, 21844, 87380, 349524, 1398100, 5592404, 22369620, 89478484, 357913940, 1431655764, 5726623060, 22906492244, 91625968980, 366503875924, 1466015503700, 5864062014804, 23456248059220, 93824992236884
Offset: 1
A033035(n=1..4) all are odd, then A033035(n=5..20) all are even, then A033035(n=21..84) all are odd, then A033035(n=85..340) all are even, etc.
Comments