A202062
Number of ascent sequences avoiding the pattern 201.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245, 435492, 2261769, 12033165, 65369590, 361661809, 2033429427, 11597912588, 67004252081, 391599609911, 2312726369640, 13789161819383, 82932744795049, 502777950712812, 3070529443569777, 18879637374473465, 116815588935673706, 727011479685559453
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..133
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 27.
- Giulio Cerbai, Anders Claesson and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Anthony Guttmann and Vaclav Kotesovec, L-convex polyominoes and 201-avoiding ascent sequences, arXiv:2109.09928 [math.CO], 2021.
Total number of ascent sequences is given by
A022493.
A202059
Number of ascent sequences avoiding the pattern 100.
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 153, 583, 2410, 10721, 50965, 257393, 1374187, 7722862, 45520064, 280502924, 1802060232, 12040040899, 83475921469, 599400745354, 4449689901306, 34096169966924, 269286884243138, 2189193150557825, 18297258191472880, 157049750065028868
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..628
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641, 2011
Corrected a(7), was 383, but should be 583 according to Duncan-Steimgrimsson paper and independent computation. -
Andrew Baxter, Jan 06 2014
A202060
Number of ascent sequences avoiding the pattern 110.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 143, 510, 1936, 7774, 32848, 145398, 671641, 3227218, 16084747, 82955090, 441773793, 2424845273, 13695855478, 79485625385, 473393639992, 2889930405750, 18064609329598, 115513453404597, 754956282308784, 5039064184597772, 34323984497482559
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..43
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641, 2011
A202061
Number of ascent sequences avoiding the pattern 120.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 133, 442, 1535, 5546, 20754, 80113, 317875, 1292648, 5374073, 22794182, 98462847, 432498659, 1929221610, 8728815103, 40017844229, 185727603829, 871897549029, 4137132922197, 19828476952117, 95934298966615, 468291607852143, 2305162065138433
Offset: 0
- Liang Chengwei, Shi Lecun and Cai Zhongyu, Table of n, a(n) for n = 0..500 (terms 0..74 from Andrew Conway and Miles Conway)
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
A216054
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
- E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89
-
Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
A216235
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 5, 0, 0, 0, 5, 9, 5, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 507, 417, 0, 0, 0, 0, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ... row n=0
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, ... row n=1
0, 2, 5, 9, 14, 19, 19, 0, 0, 0, ... row n=2
0, 0, 5, 14, 28, 47, 66, 66, 0, 0, ... row n=3
0, 0, 0, 14, 42, 89, 155, 221, 221, 0, ... row n=4
0, 0, 0, 0, 42, 131, 286, 507, 728, 728, ... row n=5
...
Similar sequences:
A216201,
A216210,
A216216,
A216218,
A216219,
A216220,
A216226,
A216228,
A216229,
A216230,
A216232.
A038213
Top line of 3-wave sequence A038196, also bisection of A006356.
Original entry on oeis.org
1, 3, 14, 70, 353, 1782, 8997, 45425, 229347, 1157954, 5846414, 29518061, 149034250, 752461609, 3799116465, 19181424995, 96845429254, 488964567014, 2468741680809, 12464472679038, 62932092237197, 317738931708801
Offset: 0
G.f. = 1 + 3*x + 14*x^2 + 70*x^3 + 353*x^4 + 1782*x^5 + 8997*x^6 + 45425*x^7 + ...
- Johann Cigler, Number of bounded Dyck paths with "negative length", MathOverflow question, Sep 26 2020.
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - _N. J. A. Sloane_, Dec 26 2012
- F. v. Lamoen, Wave sequences
- Index entries for linear recurrences with constant coefficients, signature (6, -5, 1).
-
k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)
-
{a(n) = if( n<0, n = -n; polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, May 04 2012 */
A122881
Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
Offset: 1
For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal.
For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ...
First few rows of the triangle are:
1;
1, 2;
1, 2, 5;
1, 2, 5, 13;
1, 2, 5, 14, 34;
1, 2, 5, 14, 42, 89;
1, 2, 5, 14, 42, 131, 233;
1, 2, 5, 14, 42, 132, 417, 610;
...
A123020
Expansion of (1 -5*x +5*x^2)/((1 -2*x)*(1 -4*x +x^2)).
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 142, 493, 1766, 6443, 23750, 88045, 327406, 1219531, 4546622, 16958765, 63272054, 236096683, 881049142, 3287968813, 12270563966, 45793762763, 170903438510, 637817894125, 2380363943686, 8883629492011
Offset: 0
-
I:=[1,1,2]; [n le 3 select I[n] else 6*Self(n-1) - 9*Self(n-2) +2*Self(n-3): n in [1..31]]; // G. C. Greubel, Jul 11 2021
-
Table[(2^n - ChebyshevT[n + 1, 2] + 4*ChebyshevT[n, 2])/3, {n,0,30}] (* G. C. Greubel, Jul 11 2021 *)
-
def a(n): return (1/3)*(2^n - chebyshev_T(n+1, 2) + 4*chebyshev_T(n, 2))
[a(n) for n in (0..30)] # G. C. Greubel, Jul 11 2021
A359311
Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps which reach at least 6 at some point.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 12, 89, 528, 2755, 13244, 60214, 263121, 1116791, 4637476, 18936940, 76327705, 304520286, 1205152900, 4738962369, 18540020091, 72240167011, 280579954028, 1087033982059, 4203231136230, 16228518078010, 62588797371361, 241198478726775
Offset: 0
a(n) = 0 for n <= 5 because no path of length <= 10 can reach 6 and then descend to 0.
a(6) = 1 because there is one path of length 12 that reaches 6: six steps up, and six steps back down.
-
a:= n-> binomial(2*n, n)/(n+1)-(<<0|1|0>,
<0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Jan 21 2023
-
Table[Sum[Binomial[2(n + 1), (n + 1) + 7 k] - 4 Binomial[2n, n + 7k], {k,1,n}], {n,0,30}]
Comments