cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A242324 Indices of primes in the tribonacci-like sequence A214827.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 14, 15, 18, 39, 42, 46, 128, 319, 501, 645, 749, 785, 924, 1786, 1810, 3032, 3053, 3913, 4444, 5611, 6290, 20526, 20850, 23431, 44281, 45981, 103816, 133938
Offset: 1

Views

Author

Robert Price, May 10 2014

Keywords

Comments

a(37) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,5,5}; Print[1];Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A247561 Indices of primes in the tetranacci sequence A000288.

Original entry on oeis.org

5, 6, 10, 11, 12, 13, 18, 30, 31, 36, 38, 97, 108, 150, 196, 221, 277, 532, 596, 2468, 2691, 3773, 4303, 5755, 8925, 10083, 11708, 14080, 19990, 24102, 34767, 35973, 39238, 49760, 97706
Offset: 1

Views

Author

Robert Price, Sep 27 2014

Keywords

Comments

a(36) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[4]]=sum]
    Flatten[Position[LinearRecurrence[{1,1,1,1},{1,1,1,1},10^5], ?PrimeQ]]- 1 (* _Harvey P. Dale, Dec 20 2016 *)

A247192 Indices of primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

7, 9, 30, 31, 33, 46, 52, 54, 82, 102, 109, 124, 210, 301, 351, 365, 369, 1045, 2044, 2125, 2143, 2815, 4377, 4754, 4893, 7310, 11558, 17602, 17929, 28389, 32100, 44298, 106725, 151678, 197953
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(36) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[5]]=sum]

A248920 Indices of primes in the pentanacci numbers sequence A000322.

Original entry on oeis.org

5, 7, 13, 18, 19, 34, 35, 38, 43, 48, 188, 286, 450, 501, 759, 1446, 2021, 2419, 2997, 3715, 5677, 13566, 46303, 57174, 108844, 117145, 166683, 178863
Offset: 1

Views

Author

Robert Price, Oct 16 2014

Keywords

Comments

a(29) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[5]]=sum]

A242572 Indices of primes in A214828.

Original entry on oeis.org

3, 7, 8, 16, 19, 36, 44, 151, 292, 448, 467, 896, 1148, 1607, 1711, 1956, 2020, 6635, 14228, 25519, 43140, 74984, 77696, 137975
Offset: 1

Views

Author

Robert Price, May 17 2014

Keywords

Comments

a(25) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,6,6}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A253318 Indices of primes in the 7th-order Fibonacci number sequence, A060455.

Original entry on oeis.org

7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 26, 32, 33, 36, 42, 44, 71, 72, 137, 180, 193, 285, 679, 955, 1018, 1155, 1176, 1191, 2149, 2590, 2757, 3364, 4233, 6243, 6364, 7443, 10194, 11254, 13318, 18995, 20478, 22647, 29711, 34769, 61815, 71993, 107494, 135942, 148831
Offset: 1

Views

Author

Robert Price, Dec 30 2014

Keywords

Comments

a(52) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1}; step=7; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[7]]=sum]; lst

A145027 a(n) = a(n-1) + a(n-2) + a(n-3) with a(1) = 2, a(2) = 3, a(3) = 4.

Original entry on oeis.org

2, 3, 4, 9, 16, 29, 54, 99, 182, 335, 616, 1133, 2084, 3833, 7050, 12967, 23850, 43867, 80684, 148401, 272952, 502037, 923390, 1698379, 3123806, 5745575, 10567760, 19437141, 35750476, 65755377, 120942994, 222448847, 409147218
Offset: 1

Views

Author

Keywords

Comments

If the conjectured recurrence in A000382 is correct, then a(n) = A000382(n+2) - A000382(n+1), n>=4. - R. J. Mathar, Jan 30 2011

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+x)*(2-x)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{2,3,4},33] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1+x)*(2-x)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    a=(x*(1+x)*(2-x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Apr 22 2019

Formula

From R. J. Mathar, Jan 30 2011: (Start)
a(n) = -A000073(n-1) + A000073(n) + 2*A000073(n+1).
G.f. x*(1+x)*(2-x)/(1-x-x^2-x^3). (End)

A244001 Indices of primes in A214830.

Original entry on oeis.org

3, 7, 11, 20, 28, 63, 72, 79, 688, 795, 999, 2716, 13220, 15940, 17903, 26832, 28416, 33448, 117923
Offset: 1

Views

Author

Robert Price, Jun 17 2014

Keywords

Comments

a(20) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,8,8}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A246517 Indices of primes in A141036.

Original entry on oeis.org

0, 5, 14, 26, 33, 222, 234, 482, 937, 1170, 1290, 1877, 1897, 3413, 6017, 9365, 47470, 48254, 97421, 102057, 119689, 132418, 192517, 194442
Offset: 1

Views

Author

Robert Price, Aug 28 2014

Keywords

Comments

a(25) > 2*10^5.
A141036(a(n)) = A246518(n).

Crossrefs

Programs

  • Haskell
    a246517 n = a246517_list !! (n-1)
    a246517_list = filter ((== 1) . a010051'' . a141036) [0..]
    -- Reinhard Zumkeller, Sep 15 2014
  • Mathematica
    a={2,1,1}; Print[0]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A253705 Indices of primes in the 8th-order Fibonacci number sequence, A079262.

Original entry on oeis.org

9, 17, 25, 125, 350, 1322, 108935, 199528
Offset: 1

Views

Author

Robert Price, Jan 09 2015

Keywords

Comments

a(9) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[{1,1,1,1,1,1,1,1},{0,0,0,0,0,0,0,1},200000],?PrimeQ]]-1 (* The program takes a long time to run *) (* _Harvey P. Dale, Apr 26 2018 *)
  • PARI
    lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(polcoeff(gf+O(x^(n+1)), n)), print1(n, ", ")););} \\ Michel Marcus, Jan 12 2015
Previous Showing 11-20 of 36 results. Next