cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A081258 Numbers k > 1 such that k^3 - 1 (or equivalently k^2 + k + 1) has no prime factor greater than k.

Original entry on oeis.org

16, 18, 22, 30, 49, 67, 68, 74, 79, 81, 87, 100, 102, 121, 135, 137, 146, 149, 154, 158, 159, 163, 165, 169, 172, 178, 181, 191, 211, 221, 229, 230, 235, 256, 262, 263, 269, 273, 277, 291, 292, 301, 305, 313, 315, 324, 326, 334, 352, 361, 372, 373, 380, 393
Offset: 1

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

One might also include 1 as a term here. - R. J. Mathar, Oct 11 2011

Examples

			16 is a term: 16^3 - 1 = 4095 = 3*3*5*7*13.
		

Crossrefs

Programs

  • Maple
    isA081258 := proc(n)
            numtheory[factorset](n^3-1) ;
            if max(op(%)) <= n then
                    true;
            else
                    false;
            end if;
    end proc;
    for n from 1 to 400 do
            if isA081258(n) then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 11 2011
  • Mathematica
    Select[Range[2, 1000], FactorInteger[#^3 - 1][[-1, 1]] <= #&] (* Jean-François Alcover, Jun 15 2020 *)

Extensions

Name changed by Robert Israel, Nov 11 2016

A240550 Greatest prime factor of n^7+1.

Original entry on oeis.org

2, 43, 547, 113, 449, 197, 911, 5419, 16493, 909091, 1623931, 13063, 22079, 7027567, 10678711, 15790321, 22796593, 32222107, 226871, 10529, 81867661, 86969, 2969, 183458857, 234750601, 59011, 2269, 35771, 574995877, 1118041, 71821, 86171, 219409, 104119, 11831
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^7 + 1][[-1, 1]], {n, 100}]

A240551 Greatest prime factor of n^8+1.

Original entry on oeis.org

2, 257, 193, 65537, 11489, 98801, 169553, 673, 21523361, 5882353, 6304673, 260753, 407865361, 16097, 179953, 6700417, 184417, 113607841, 563377, 1505882353, 300673, 3227992561, 623009, 2311681, 29423041, 57734881, 769, 22223646961, 561377, 4855073
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^8 + 1][[-1, 1]], {n, 100}]

A240552 Greatest prime factor of n^9+1.

Original entry on oeis.org

2, 19, 37, 109, 5167, 46441, 117307, 87211, 530713, 52579, 590077, 1801, 937, 132049, 811, 38737, 5653, 465841, 236377, 69481, 613, 5966803, 1117, 7561, 6597973, 102966067, 19927, 102547, 10435069, 120871, 1538083, 18837001, 221401, 745903, 612740917, 55117
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[n^9 + 1][[-1, 1]], {n, 100}]
  • PARI
    a(n) = vecmax(factor(n^9+1)[,1]); \\ Michel Marcus, Dec 17 2017

A281661 The least common multiple of 1 + n^2 and 1 + n^3.

Original entry on oeis.org

1, 2, 45, 140, 1105, 1638, 8029, 8600, 33345, 29930, 101101, 81252, 250705, 186830, 540765, 381488, 1052929, 712530, 1895725, 1241660, 3208401, 2046902, 5164765, 3224520, 7977025, 4890938, 11899629, 7184660, 17233105, 10268190, 24327901, 14329952, 33588225, 19586210
Offset: 0

Views

Author

R. J. Mathar, Jan 26 2017

Keywords

Comments

If d|(1 + n^2) and d|(1 + n^3), then d|((1 + n^2) - (n*(1 + n^2) - (1 + n^3))^2) = 2*n. If k|n and k|(1 + n^2), then k = 1 is only option since k|n^2 and k|(1 + n^2). So d must be 1 or 2, exactly. Obviously if n is odd, then the greatest d must be 2 since 1 + n^2 and 1 + n^3 are even. If n is even, then d must be 1 since 1 + n^2 and 1 + n^3 are odd.

Crossrefs

Programs

  • Maple
    A281661 := proc(n)
            ilcm(1+n^2,1+n^3);
    end proc:
  • Mathematica
    Table[LCM[n^2+1,n^3+1],{n,0,50}] (* Harvey P. Dale, Jun 10 2023 *)
  • PARI
    a(n) = lcm(n^2+1, n^3+1); \\ Michel Marcus, Jan 29 2017
    
  • PARI
    a(n) = (n^2 + 1)*(n^3 + 1)/(1 + n%2); \\ Altug Alkan, Jan 29 2017

Formula

a(n) = lcm(1+n^2, 1+n^3) = (1+n^2)*(1+n^3)/gcd(1+n^2, 1+n^3).
a(n) = (1+n^2)*(1+n^3)/ A000034(n) with g.f. ( 1 +2*x +39*x^2 +128*x^3 +850*x^4 +828*x^5 +2054*x^6 +832*x^7 +861*x^8 +130*x^9 +35*x^10 ) / ( (x-1)^6 *(1+x)^6 ).
A006530(a(n)) = max( A081256(n), A014442(n)). - R. J. Mathar, Jan 28 2017
a(n) = (3 + (-1)^n)*(1 + n^2 + n^3 + n^5)/4. - Colin Barker, Feb 07 2017

A281794 The largest prime factor of (1+n^2)*(1+n^3).

Original entry on oeis.org

1, 2, 5, 7, 17, 13, 37, 43, 19, 73, 101, 61, 29, 157, 197, 211, 257, 29, 307, 181, 401, 421, 463, 53, 577, 601, 677, 73, 757, 421, 67, 37, 331, 151, 1123, 613, 1297, 137, 67, 1483, 1601, 547, 1723, 139, 631, 1013, 109, 103, 461, 1201, 61, 2551, 541, 919
Offset: 0

Views

Author

R. J. Mathar, Jan 30 2017

Keywords

Crossrefs

Programs

  • Magma
    [#f eq 0 select 1 else f[ #f][1] where f is Factorization((1+n^2)*(1+n^3)): n in [0..60]]; // Vincenzo Librandi, Jun 03 2017
    
  • Maple
    A281794 := proc(n)
        A006530((1+n^2)*(1+n^3)) ;
    end proc:
    seq(A281794(n),n=0..60) ;
  • Mathematica
    Table[Max[Transpose[FactorInteger[(1 + n^2) (1 + n^3)]][[1]]], {n, 0, 60}] (* Vincenzo Librandi, Jun 03 2017 *)
  • PARI
    a(n) = if (n==0, 1, my(f=factor((1+n^2)*(1+n^3))); vecmax(f[, 1])); \\ Michel Marcus, Jun 03 2017; corrected Jun 13 2022

Formula

a(n) = max( A014442(n), A081256(n)).
a(n) = A006530(A281661(n)).

A357127 a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 1, 307, 1, 127, 421, 463, 1, 79, 601, 31, 37, 757, 271, 67, 1, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 1, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907, 109, 73, 613
Offset: 2

Views

Author

Mohammed Bouras, Sep 13 2022

Keywords

Comments

All the primes in this sequence appear exactly twice.
The new primes encountered seem to match the terms of A256148 for n>1. Bill McEachen, Oct 13 2022

Examples

			a(2) = a(a(2) - 2 - 1) = a(7 - 2 - 1) = a(4).
a(3) = a(9) = 3 + 9 + 1 = 13.
a(5) = a(25) = gcd(5^2 + 5 + 1, 25^2 + 25 + 1) = 31.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A357127(n): return m if (m:=max(primefactors(n*(n+1)+1))) > n else 1 # Chai Wah Wu, Oct 15 2022

Formula

Conjecture 1: If a(n) != 1, then a(n) = a(a(n) - n - 1).
Conjecture 2: If n != m and a(n) = a(m), then
a(n) = gcd(n^2 + n + 1, m^2 + m + 1) = n + m + 1.

A240554 Square array of the greatest prime factor of n^k + 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 2, 5, 2, 1, 5, 5, 3, 2, 1, 3, 17, 7, 17, 2, 1, 7, 13, 13, 41, 11, 2, 1, 2, 37, 7, 257, 61, 13, 2, 1, 3, 5, 31, 313, 41, 73, 43, 2, 1, 5, 13, 43, 1297, 521, 241, 547, 257, 2, 1, 11, 41, 19, 1201, 101, 601, 113, 193, 19, 2, 1, 3, 101, 73, 241
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Cf. A003992 (n^k), A014442 (k=2), A081256 (k=3), A096172 (k=4).
Cf. A240548-A240553 (k=5 to 10).

Programs

  • Mathematica
    Table[FactorInteger[(n-k)^k + 1][[-1,1]], {n, 12}, {k, n}]

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018

A243609 Numbers n such that the difference between the greatest prime divisor of n^3 + 1 and the sum of the other distinct prime divisors is equal to +-1.

Original entry on oeis.org

12, 17, 179, 546, 1241, 12520, 19484, 35732, 65933, 76782, 86918, 90035, 94381, 120195, 183677, 209837, 229829, 241951, 288260, 315724, 338712, 344231, 422069, 568346, 597327, 734382, 894504, 1345874, 1635804, 1697093, 2000325, 2043907, 2131745, 2262789, 2492717
Offset: 1

Views

Author

Michel Lagneau, Jun 23 2014

Keywords

Examples

			12 is in the sequence because 12^3 + 1 = 1729 = 7 * 13 * 19 and 19 - (13+7) = 19 - 20 = -1;
17 is in the sequence because 17^3 + 1 = 4914 = 2*3^3*7*13 and 13 - (7+3+2) = 13 - 12 = 1.
		

Crossrefs

Programs

  • Mathematica
    fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n^3+1]][[1]]},Max[f]-Total[Most[f]]==1];gpdQ[n_]:=Module[{g=Transpose[FactorInteger[n^3+1]][[1]]},Max[g]-Total[Most[g]]==-1];Union[Select[Range[2,5*10^6],fpdQ ],Select[Range[2,5*10^6],gpdQ ]]
    dgQ[n_]:=Module[{f=FactorInteger[n^3+1][[All,1]],len,a,b},len= Length[ f]-1;{a,b}=TakeDrop[f,len];Abs[Total[a]-b[[1]]]==1]; Select[Range[ 25*10^5],dgQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 03 2019 *)
Previous Showing 11-20 of 20 results.