A108350
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
Offset: 0
Triangle rows begin
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 13, 5, 1;
1, 6, 21, 32, 21, 6, 1;
As a square array read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 3, 7, 13, 21, 31, 43, ...
1, 4, 13, 32, 65, 116, 189, ...
1, 5, 21, 65, 161, 341, 645, ...
1, 6, 31, 116, 341, 842, 1827, ...
1, 7, 43, 189, 645, 1827, 4495, ...
-
trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k,j)*binomial(n-j,k)*((j+1) % 2)), ", ");); print(););} \\ Michel Marcus, Sep 11 2013
A125171
Riordan array ((1-x)/(1-3*x+x^2),x/(1-x)) read by rows.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 13, 8, 4, 1, 34, 21, 12, 5, 1, 89, 55, 33, 17, 6, 1, 233, 144, 88, 50, 23, 7, 1, 610, 377, 232, 138, 73, 30, 8, 1, 1597, 987, 609, 370, 211, 103, 38, 9, 1, 4181, 2584, 1596, 979, 581, 314, 141, 47, 10, 1, 10946, 6765, 4180, 2575, 1560, 895, 455, 188, 57, 11, 1, 28657, 17711, 10945, 6755, 4135, 2455, 1350, 643
Offset: 0
(6,3) = 33 = 12 + 21 = (5,3) + (5,2). First few rows of the triangle are:
1;
2, 1;
5, 3, 1;
13, 8, 4, 1;
34, 21, 12, 5, 1;
89, 55, 33, 17, 6, 1;
...
-
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
with(combinat):
for n from 0 to 10 do
seq(C(n, n-k) + add(fibonacci(2*i)*C(n-i, n-k-i), i = 1..n), k = 0..n);
end do; # Peter Bala, Mar 21 2018
-
T(n,k)=if(k==n,1,if(k<=1,fibonacci(2*n-1),T(n-1,k)+T(n-1,k-1)));
for(n=1,15,for(k=1,n,print1(T(n,k),", "));print()); /* show triangle */
/* Joerg Arndt, Jun 17 2011 */
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 15, 12, 8, 4, 1, 31, 27, 20, 12, 5, 1, 63, 58, 47, 32, 17, 6, 1, 127, 121, 105, 79, 49, 23, 7, 1, 255, 248, 226, 184, 128, 72, 30, 8, 1, 511, 503, 474, 410, 312, 200, 102, 38, 9, 1
Offset: 1
First few rows of the triangle are:
1;
1, 1;
3, 2, 1;
7, 5, 3, 1;
15, 12, 8, 4, 1;
31, 27, 20, 12, 5, 1;
63, 58, 47, 32, 17, 6, 1;
...
-
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)+Sum([2..n],i->2^(i-1)*Binomial(n-i,n-k-i))))); # Muniru A Asiru, Mar 22 2018
-
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
for n from 0 to 12 do
seq(C(n, n-k) + add(2^(i-1)*C(n-i, n-k-i), i = 2..n), k = 0..n)
end do; # Peter Bala, Mar 21 2018
-
T[n_, k_] := Binomial[n, n-k] + Sum[2^(i-1) Binomial[n-i, n-k-i], {i, 2, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 10 2019 *)
-
# uses[riordan_array from A256893]
# After Peter Bala.
riordan_array((1-2*x+2*x^2)/((1-x)*(1-2*x)), x/(1-x), 8) # Peter Luschny, Mar 21 2018
A210562
Triangle of coefficients of polynomials v(n,x) jointly generated with A210561; see the Formula section.
Original entry on oeis.org
1, 2, 2, 2, 5, 4, 2, 6, 12, 8, 2, 6, 17, 28, 16, 2, 6, 18, 46, 64, 32, 2, 6, 18, 53, 120, 144, 64, 2, 6, 18, 54, 152, 304, 320, 128, 2, 6, 18, 54, 161, 424, 752, 704, 256, 2, 6, 18, 54, 162, 474, 1152, 1824, 1536, 512, 2, 6, 18, 54, 162, 485, 1372, 3056, 4352
Offset: 1
First five rows:
1
2 2
2 5 4
2 6 12 8
2 6 17 28 16
First three polynomials v(n,x): 1, 2 + 2*x, 2 + 5*x + 4*x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210561 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210562 *)
A283150
Riordan array (1/(1-9x)^(1/3), x/(9x-1)).
Original entry on oeis.org
1, 3, -1, 18, -12, 1, 126, -126, 21, -1, 945, -1260, 315, -30, 1, 7371, -12285, 4095, -585, 39, -1, 58968, -117936, 49140, -9360, 936, -48, 1, 480168, -1120392, 560196, -133380, 17784, -1368, 57, -1, 3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1, 33011550, -99034650, 66023100
Offset: 0
The triangle begins
1;
3, -1;
18, -12, 1;
126, -126, 21, -1;
945, -1260, 315, -30, 1;
7371, -12285, 4095, -585, 39, -1;
58968, -117936, 49140, -9360, 936, -48, 1;
480168, -1120392, 560196, -133380, 17784, -1368, 57, -1;
3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
-
T := (n, k) -> (-1)^k*binomial(n - 2/3, n - k)*9^(n - k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Sep 03 2021
-
a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n);
tabl(nn) = for(n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2017
A283151
Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).
Original entry on oeis.org
1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0
Triangle begins
1;
6, -1;
45, -15, 1;
360, -180, 24, -1;
2970, -1980, 396, -33, 1;
24948, -20790, 5544, -693, 42, -1;
212058, -212058, 70686, -11781, 1071, -51, 1;
1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1;
15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
A159853
Riordan array ((1-2*x+2*x^2)/(1-x), x/(1-x)).
Original entry on oeis.org
1, -1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 7, 8, 7, 4, 1, 1, 5, 11, 15, 15, 11, 5, 1, 1, 6, 16, 26, 30, 26, 16, 6, 1, 1, 7, 22, 42, 56, 56, 42, 22, 7, 1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, 1, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 1, 10, 46, 130, 255
Offset: 0
Triangle begins:
1;
-1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 3, 4, 4, 3, 1;
...
-
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)-2*Binomial(n-1,n-k-1)+2*Binomial(n-2,n-k-2)))); # Muniru A Asiru, Mar 22 2018
-
/* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Mar 22 2018
-
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
end proc:
for n from 0 to 10 do
seq(C(n, n-k) - 2*C(n-1, n-k-1) + 2*C(n-2, n-k-2), k = 0..n);
end do; # Peter Bala, Mar 20 2018
-
Join[{1, -1}, Rest[T[0, 0]=1; T[n_, k_]:=Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1] + 2 Binomial[n - 2, n - k - 2]; Table[T[n, k], {n, 1, 15}, {k, 0, n}]//Flatten]] (* Vincenzo Librandi, Mar 22 2018 *)
-
# uses[riordan_array from A256893]
riordan_array((1-2*x+2*x^2)/(1-x), x/(1-x), 8) # Peter Luschny, Mar 21 2018
A210561
Triangle of coefficients of polynomials u(n,x) jointly generated with A210562; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 3, 8, 8, 1, 3, 9, 20, 16, 1, 3, 9, 26, 48, 32, 1, 3, 9, 27, 72, 112, 64, 1, 3, 9, 27, 80, 192, 256, 128, 1, 3, 9, 27, 81, 232, 496, 576, 256, 1, 3, 9, 27, 81, 242, 656, 1248, 1280, 512, 1, 3, 9, 27, 81, 243, 716, 1808, 3072, 2816, 1024, 1, 3, 9
Offset: 1
First five rows:
1
1...2
1...3...4
1...3...8...8
1...3...9...20...16
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 4x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210559 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210560 *)
A143685
Pascal-(1,9,1) array.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 21, 21, 1, 1, 31, 141, 31, 1, 1, 41, 361, 361, 41, 1, 1, 51, 681, 1991, 681, 51, 1, 1, 61, 1101, 5921, 5921, 1101, 61, 1, 1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1, 1, 81, 2241, 24681, 96201, 96201, 24681, 2241, 81, 1, 1, 91, 2961, 41511, 239241, 460251, 239241, 41511, 2961, 91, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 11, 21, 31, 41, 51, 61, ... A017281;
1, 21, 141, 361, 681, 1101, 1621, ...
1, 31, 361, 1991, 5921, 13151, 24681, ...
1, 41, 681, 5921, 29761, 96201, 239241, ...
1, 51, 1101, 13151, 96201, 460251, 1565301, ...
1, 61, 1621, 24681, 239241, 1565301, 7272861, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 11, 1;
1, 21, 21, 1;
1, 31, 141, 31, 1;
1, 41, 361, 361, 41, 1;
1, 51, 681, 1991, 681, 51, 1;
1, 61, 1101, 5921, 5921, 1101, 61, 1;
1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8), this sequence (m = 9).
-
A143685:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143685(n,k,9): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 10], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021
Comments